Categories
Expert texts

Acquisition of plant, device and equipment availability services

Summary

Recently, a contract was concluded in Croatia for the supply of a photovoltaic plant as an availability service. It is a contract under which the contractor delivers the availability of the facility in accordance with the availability standards set by the contracting entity. The contractor is obliged to purchase the plant, install, test, purchase and install finance and maintain a certain number of years (mainly up to 10 years). Life-cycle costing (LCC) was used in the contractor’s procurement process[1]) set out in Articles 287 and 288 of the Treaty on the Functioning of the European Union; of the Public Procurement Act. Since Croatia has not yet developed the practice of using contracts for the supply of the availability of plants, appliances, machinery and equipment, as well as the application of life-cycle costing criteria, this text considers the basic characteristics of the contract itself, the standards of availability, co-financing and the effects of capital assistance on the amount of compensation and the recording of transactions in the accounts of the contracting authority and the contractor.

1. Introduction

Public buyers can procure public investment projects (construction and non-construction – plants, equipment, appliances, etc.) in different ways. Each method has different effects on transparency, durability of quality in the life cycle, price, financial sustainability, availability of public service delivered by the project to citizens, etc. The most commonly used procurement method (or procurement model for public investment projects) by contracting authorities is traditional procurement of works. Under this procurement model, the contracting authority enters into a works contract with the contractor and pays for the delivered works from its own (budgetary) sources or from other sources of mainly debt financing. An important feature of this procurement model is that the contracting authority maintains the construction or installation throughout its life cycle by taking over the predominant part of the overall risks of the construction or installation during its life cycle.

Another model increasingly used by contracting authorities in the developed world is the purchase of the availability service of a building or plant. The difference of this procurement model for public investment projects is that the contracting authority does not only procure works, but also related maintenance. Therefore, in the case of the availability service procurement model, the works and maintenance are inextricably linked. Availability is understood as the obligation of the service provider of availability to keep the building or installation in its available (functional) condition in the contract period, which is usually between 20 and 30 years for buildings and between 5 and 15 years for plants. The contracting authority shall not pay for the works performed but shall periodically, during the contract period, pay for the availability services provided if, during the accounting period (month, quarter, half-year or year), the building or installation was available. In this sense, the service provider of availability, in addition to construction and maintenance, most often assumes the obligations of financing the construction of a public project.

One of the reasons for the more frequent application of the service availability procurement model is the specialization and more efficient organization of the delivery of public services. Indeed, contracting authorities are specialised in the delivery of public services (for example, education, medical treatment, illumination of public spaces, use of renewable energy, security, defence, etc.). Their core business is not to operate buildings or facilities (for example, schools, hospitals, public lighting, renewable energy plants, police and fire brigades, military buildings). They therefore assign the care of buildings and installations to specialised private sector entities which, through contracts for the supply of the availability of buildings or installations, engage in construction, maintenance, financing and, often, management. They will only pay for the use of buildings and installations and only if they are available to them for the delivery of their public services for which they exist.

Recently, for the first time in the Republic of Croatia, a contract was concluded for the supply of the service of availability of a photovoltaic plant. It is a contract between a municipality and a private entrepreneur under which the entrepreneur is obliged to draw up the project documentation of the plant, obtain permits, supply and install a rooftop plant owned by the municipality, purchase and install finance and maintain the plant for an appropriate number of years in a way that produces renewable energy continuously. If the facility is available (functional) in the manner specified by the agreed standards, the municipality will pay an availability fee for the previous month.

Each model of procurement of public investment projects has advantages and disadvantages, and the task of public management is to determine whether the advantages are greater than disadvantages and in such a comparison process choose the one with which the highest probability of achieving value for money can be expected. Table 1 presents the advantages and disadvantages of the public project procurement model as an availability service:

Table 1: Advantages and disadvantages of the availability service procurement model

Source: Authors.

A great advantage of the application of the availability service procurement model is the achievement of the client's business situation in which the administration activity is focused on the delivery of a public service, and not on the construction or installation itself as a prerequisite for the delivery of a public service. When concluding an availability service contract, the public administration does not spend time and capacity for continuous maintenance of buildings and installations, but exclusively on the quality of the delivered public service and communication with users of the service delivered to citizens by the construction or installation. The construction or installation is carried out by an entrepreneur whose main business is that. The consequence of such a business situation (business model) is the transfer of the predominant part of the risk of a public project to an entrepreneur with the compensation of a premium for transferred risks (availability fee), which is expected to achieve a higher value of public services for the money paid. In addition, if the contract stipulates that the implementation of the project (capital value) is financed by an entrepreneur, then the contracting authority does not borrow or pay the capital value from the budget at the beginning of the implementation of the project, but successively in the contract period, from the operational budget, in the contract period. The data on the capital value of the project and the operating costs, as determined in the public procurement procedure, represent market values and as such are of great value in the preparation of future similar public projects. Databases with market values will contribute to reducing the risk of exceeding the budget of future projects, exceeding the implementation period and increasing the likelihood of achieving the planned effects. As a more experienced entity is involved in the preparation, implementation and use, contracting authorities with insufficient administrative capacity will be able to implement more complex public projects. However, in the near future, it will be of great importance that all the energy produced is from the municipality, which will allow it to form energy communities and freely share the energy produced with other public authorities, citizens and businesses.

However, since the availability contract is long-term, its preparation will be more complex. Also, since the contractor assumes a predominant part of the risk of the project, its preparation of the bid will require the engagement of a competent team that has its financial value. In the preparation process, all operators face several new terms such as: Allocation, risk identification and quantification matrices, availability service standards, life-cycle or total cost of living, payment mechanism, etc. This does not mean that these terms and analyses should not be used in works procurement procedures. Moreover, they should, but contracting authorities do not use them. For the preparation of such contracts, experts who possess the knowledge and skills sufficient to carry out the complete preparation process are needed.

2. Characteristics of the availability contract

The contract for the supply of the availability, in particular the availability of the photovoltaic plant, regulates the relations between the contracting authority (municipality) and the contractor (undertaking). The areas most frequently covered by the contract are: definitions of terms; introductory remarks; the definition of an installation; definition of the availability of installations; the rights and obligations of the parties; availability charge; calculation, payment and adjustment of the availability charge; the duration and modifications of the contract; financing, refinancing and co-financing procedures; termination of the contract; final provisions; attachments and the like.

The preliminary remarks determine the ownership of the property on which the installation is installed, the number of metering points, data on the conducted public procurement procedure, the power of the installation, the right to use renewable energy produced, etc. The concept of installation should be clearly defined in the contract. These are the obligations of preparation of the main project, obtaining electro-energy approval, procurement of plant parts and installation on the roof, maintenance, periodic inspections, obtaining approval for permanent operation, testing and the like. A particularly important part of the contract is the precise definition of the meaning of the concept of availability, i.e. the description of the status of an installation that may be available, partially available and unavailable. In the event of an availability condition, the contracting entity shall pay the availability fee in full. In the event of partial availability, a reduced fee will be paid, while in the event of unavailability, the payment of the fee will be suspended until the facility is restored to availability. The contract should provide for the risks assumed by the contracting parties, which are most often described in the so-called risk allocation matrix.

The defined compensation, given the long-term nature of the contract, is most often adjusted for inflation. The adjustment for inflation is carried out periodically according to the selected index, and the most commonly used is the harmonised index of consumer prices published by the Croatian Bureau of Statistics. A particularly important part of the contract is that relating to termination, the so-called termination clauses. Termination clauses shall set out the grounds on which the parties may terminate the contract related to the consequences of terminating the contract depending on the grounds. Since most often the contractor is obliged to finance the project, it is necessary to specify the obligation of financing and the rights and consequences of refinancing during the term of the contract. It is also important to define here the mechanism, the procedure in case of payment of a grant (capital aid) and the related reduction of the availability fee. The contract ends with a list of annexes, the most common being availability standards, a risk allocation matrix, a life-cycle cost projection, proof of ownership, etc.

3. Availability standards

Establishing trust and transparency in customer-contractor relations is crucial for the operationalization of the availability service, and in this context it is necessary to establish a platform that will enable verification of contract elements and agreed availability indicators. Availability in the solar industry refers to the technical ability of solar systems to produce energy in a given period.

3.1. What are standards?

Availability standards are the basic measure of reliability and efficiency of solar systems. The specifics of sustainable energy sources should also be noted here, which is that, in addition to the availability of the energy production systems themselves, we also have the challenge of the availability of "energy sources". In traditional systems for generating energy (thermal power plants, aggregates, etc.), we can assume that if fuel is provided and available, the system will ensure continuous energy production in accordance with the installed power of the plant. In other words, production interruption occurs mainly due to failures or fuel switching[2] . In the case of sustainable energy sources (RES – solar and wind), this is, in nature, the statistical availability of energy products.[3]. An example of RES availability is shown in Figure 1, where seasonality of supply is clearly visible, both on an annual and daily basis. Therefore, it is essential for availability to have very precise information on energy sources and the establishment of a correlation between the availability of energy products and the energy produced by the installation.

Figure 1: Availability of RES

Source: Nature.

Another critical component necessary to determine availability is the availability and reliability of the energy network to which the installation is connected. The functioning of the photovoltaic plant must be aligned with the parameters of the energy network defined by HOPS (for large installations) or DSO (for smaller installations). Network parameters are defined by maximum voltages, frequency stability, etc. and, if the installation or network is not harmonised, the safety systems shall shut down the installation until the parameters are brought back into regular ranges. This can be a significant challenge, and can be seen in Table 2, which shows the lost production at one photovoltaic plant on the Croatian Littoral. In this case, the cause of the plant failure was too high network voltage at certain phases (voltage higher than 253 V), which caused the automatic shutdown of the plant.

Table 2: Lost production in the PV plant due to over-voltage of the network

Source: Authors.

The third key component of plant availability is the quality of the system itself, which consists of a large number of components[4] – each with its own level of reliability.

Scheme 1: Overview of photovoltaic plant system components

Source: Authors.

The quality of the plant begins with the design, which includes the selection of quality components, optimal installation of solar panels, and ensuring proper cooling and protection from adverse weather conditions. Solar panels, inverters and other parts of solar systems must meet certain quality standards to ensure long-term and reliable operation. One of the quality indicators may be certificates issued by relevant industry associations or international organisations.

Monitoring and control systems play a significant role in ensuring optimal operation of solar plants. Automation and remote monitoring systems enable quick problem identification and remote control of the system. Monitoring the performance of solar systems helps to identify and solve problems that may affect availability. Monitoring standards typically include measurement and analysis of energy production and monitoring of equipment performance. Finally, regular maintenance can have a major impact on the long-term and efficient operation of solar systems. Maintenance standards usually include regular cleaning of solar panels, inspection and testing of equipment, and replacement of parts that have reached the end of their lifespan. It is important to note that standards may vary depending on the region, technology and type of solar system, and availability management often requires an integrated approach that includes technical, operational and management strategies.

3.2. Why are standards the most important part of a contract?

Linking the standard to the contractual obligations of the service provider is essential to ensure that the supplier of the availability service meets certain quality, safety or any other relevant standards specified in the contract. The first step is to clearly define the standards that will apply to the service delivered. These may be industry standards, legislation, international standards or internal standards applied by the organisation. It is necessary to specify what specific requirements standards set and how these requirements will be integrated into the provision of services. For example, there may be a standard that specifies the necessary indicators or reporting obligations to the competent control authorities, some organisations have internal safety standards, for regular equipment maintenance or for staff training. Safety standards are particularly important if contracting authorities are public institutions (kindergartens, schools, hospitals) with specific requirements. Open communication between the customer and the service provider about the standards and their application is essential, i.e. that both contractual partners understand the expectations and obligations.

The operational implementation of standards is usually established through an availability monitoring platform that allows assessment and monitoring. Where standards are subject to changes or updates, it is necessary to ensure the flexibility of the contract and the platform that will allow for adaptation to new versions of the standards. The monitoring process may also include regular audits, performance reports or other evaluation methods. It is good practice to immediately identify the consequences of contractual non-compliance with the set standards. This may include punitive measures (penalties), procedures to correct problems or, in extreme cases, termination of the contract.

3.3. The need to establish a clear and transparent measurement system

Partner trust ensures that reliability measurements are transparent, which includes analysing and monitoring system or process performance to determine how often and to what extent it fulfils its functions without downtime or failures.

The first step in selecting and designing the system is certainly defining and harmonizing expectations between the client and the supplier. In doing so, it is important to understand the technological and financial effects of standardisation on the final price.[5].  Expectations materialise in the form of key performance indicators (KPIs) that allow measurement of reliability, such as downtime or maintenance intervals. In order to determine the KPI correctly and realistically, critical points in the system or key components that have the greatest impact on reliability should be identified, as well as failure scenarios or problems that could affect the reliability of the system.

The next step is to select the appropriate measurement method for each identified critical point or component, and what exactly we monitor (time of operation of the plant before the next failure, analysis of the causes of failures, maintenance monitoring, etc.). The collection of data for the purpose of measuring delivered standards should certainly be automated wherever possible in order to minimise human error and ensure data consistency.

An automated availability monitoring platform allows regular analysis of the collected data and identification of patterns, trends or potential system availability delays. This is done through reliability reports that provide an overview of key KPIs and performance indicators, and compare actual results with set (contracted) reliability targets. If there are discrepancies, the reasons are usually investigated and strategies for improvement are developed. Reliability measurement often requires an integrated approach involving technical, operational and management aspects. Regular monitoring and adjustment of measurement methods is essential to maintain a high reliability of a system or process.

3.4. Platform for Determining the Availability of a Photovoltaic Plant

Reliability measurement of a photovoltaic plant involves the use of various components and devices in order to properly monitor and evaluate the performance of the system. As already emphasized in the introduction to the chapter, the platform must ensure the measurement of a whole range of internal and external parameters, for which specific sensors and measuring equipment are used. Electricity generation, system efficiency and other key indicators shall be monitored by the energy generation and network quality monitoring components. For example, inverters convert direct current (DC) produced by solar panels into alternating current (AC) used in households or connected to the electricity grid. Monitoring the operation of the inverter helps to identify energy conversion problems. Voltage controllers and power monitoring systems ensure the optimal operating point of solar panels, which helps to increase the efficiency of the system. Current meters and sensors monitor the flow of electricity through the system, helping to identify deviations or problems with electricity (voltage or frequency).

The integration of these components enables systematic monitoring and analysis of the performance of photovoltaic plants, helping to maintain a reliable operation and identify potential problems in time. Today, monitoring and management of the photovoltaic plant via remote access is mandatory, which facilitates diagnostics and interventions in case of problems. A block diagram of the system used to monitor the agreed parameters of the installation which is the subject of this Article is shown in Schema 2:

Scheme 2: Structure and interrelationships of the Availability Monitoring System components

Source: Authors.

Finally, it should be emphasized the importance of algorithms for the analysis of data used to interpret data collected from different sensors and devices and for the identification of samples or anomalies that may indicate the unavailability of the plant.

4. Application of life-cycle costing (LCC) criteria

The provisions of Articles 287 and 288 of the Treaty on the Functioning of the European Union (TFEU) provide: The Public Procurement Act gives contracting authorities the possibility to assess the eligibility of tenders submitted by economic operators on the basis of information on life-cycle costs. This is useful information because the costs of a public investment project are determined not only by its capital value but also by various costs over a long period of use. When the client purchases the works, he maintains the building or plant and pays the maintenance costs. When purchasing a building or installation as an availability service, it does not maintain the building or installation but pays an availability fee which includes the purchase value, maintenance, financing and other costs depending on the contract and risk allocation.

It follows from the nature of the life-cycle costing criterion that it is not logical to apply it in cases of procurement of works other than for information purposes, since the risks and obligations arising from the declared in-service costs are assumed not by the tenderer but by the contracting authority. It is therefore logical that this criterion will be used mainly when applying the availability procurement model, in which case the tenderer assumes the obligations and risks for the costs declared. If the actual costs are lower than projected, the bidder will make a profit, and if they are higher than projected, the bidder will make a loss or lower profit than the one he planned when submitting the bid. This mechanism is also the basis of the meaning of economic ownership that is on the side of the contractor in the availability service procurement contract.

Life-cycle costing is usually an integral part of the most economically advantageous tender. In the procurement documents, the contracting authority shall oblige interested economic operators to indicate, for that purpose, in a given table, the values of the costs and risks which they assume and for which they will charge, inter alia, an availability charge during the contract period. The costs so indicated shall be reduced to their present value in accordance with a single discount rate published by the contracting authority in the procurement documents. On the example of life-cycle costs in Table 3, their present value at a discount rate of 5% it amounts to €269.213 per year and this value will be assessed.

5. Co-financing and impact of capital assistance in case of acquisition of an availability service

The procedure for co-financing or awarding capital assistance in procedures for the procurement of works is generally clear to contracting authorities. The procedure usually comes down to the pre-financing of works and the payment of capital aid upon completion of works. The amount of pre-financing is often used to settle the remaining principal of the pre-financing amount.

However, in the case of availability contracting, the procedure is somewhat different. Two variants are possible. In the first variant, the contracting authority publishes the amount of capital assistance and the method and time of payment, as a result of which tenderers offer their offer of availability allowances, including in the calculations the payment of capital assistance. The second variant will be implemented in cases where contracting authorities do not know the amount of capital assistance at the time of publication of the procurement, but count on a high probability of granting capital assistance. The second method procedure consists of the following processes: (i) the projection of the total costs in the contract period (tender of the winning bidder), (ii) the calculation of the financial rate of return of the FRR(C) project based on the availability fee and costs offered in the contract period, (iii) the calculation of the increased rate of return of the FRR(C) project after the simulation of the capital assistance disbursement, (iv) the calculation of the reduced fee in the period after the capital assistance disbursement. These steps will be illustrated by calculations:

(i) The successful tenderer submitted a projection of its costs during the contract period

In the procurement procedure, economic operators attach a table with a projection of the expected construction and maintenance costs. The data in this table provide the basis for applying LCC as one of the most economically advantageous tender (MEAT) criteria:

Table 3: Projection of costs in the contract period

Source: Simulation of the author.

(ii) Calculation of the financial rate of return of the FRR(C) offer

The procuring entity shall include in the cost projection table, which is an integral part of the contract, the contracted fee projection resulting in the calculation of the financial rate of return of the FRR(C) project bid:

Table 4: Calculation of the FRR(C) offer

Source: Simulation of the author.

The successful tenderer offered a monthly availability fee of EUR 4,655. When this remuneration (the bidder’s revenues) is included in the projection, it results that the financial rate of return of the FRR(C) project is 7.22.% annually.

(iii) Calculation of the impact of the disbursement of capital assistance (increase in the financial rate of return of the project)

The payment of capital assistance, in addition to the projected operating costs and the agreed availability fee, represents additional, extra income for the contractor. This means that its financial rate of return for the project will increase. In the case of the example and with the capital assistance of 100,000 euros paid in January of year 3, FRR(C) will increase from the nominal value of 7.22% 29.96% yearly as shown in Table 5:

Table 5: Increase in FRR(C) due to disbursement of capital assistance

Source: Simulation of the author.

In principle, capital assistance is granted to the client in order to achieve the financial sustainability of the project or affordability in the implementation of a public investment project. Therefore, capital assistance should act neutrally on the enforcer. All benefits of capital assistance are allocated to the client and this principle should be maintained when contracting the availability service.

(iv) Calculation of the reduced compensation for the period after the capital assistance has been paid

Once the capital assistance has been disbursed, a new (reduced) value of the availability allowance should be established. The criterion of equalization of FRR(C) of the contractor to the value before the payment of the grant will be used, and in the case from the example this value is 7.22% annually. Thus, the availability fee for the period between the disbursement of the capital assistance and the end of the contract should have the value with which the contractor will achieve a project return rate of 7.22.%:

Table 6: Calculation of the new availability allowance due to the disbursement of capital assistance

Source: Simulation of the author.

In the period from February 3rd year until the end of the contract, the monthly availability fee will be reduced from EUR 4,655 per month to EUR 2,534 per month. With the new availability fee and capital assistance paid, the contractor will achieve a FRR(C) of 7.22 by the end of the contract.% annually.

6. Registration of the transaction on the accounts of the client and the contractor

One of the specificities of the transaction that is the subject of this text is the separation of the so-called legal and economic ownership. The legal owner is the one who is registered in the ownership documents while the economic owner of the project is the one who exploits the property and gains benefits and bears the risks of the business. The question arises as to how to record such transactions in the accounts of the contracting parties. The source for the records is ESA 2010, paragraphs 20.287 and 20.288[6]. If the transaction separates ownership into legal and economic ownership, then the assets and liabilities will be gradually established (recorded) in the accounts of the contracting parties with the aim that at the end of the contract the contracting authority becomes both legal and economic owner. Recommendations from ESA 2010 are adapted to Croatian regulations in the area of budget and budgetary accounting. Entries in the accounts of the contracting parties are possible as shown in schemas 3 and 4. By way of illustration, the capital value of the assets is assumed to be EUR 1,000, the annual availability fee to be EUR 130, the annual depreciation of EUR 100 and the market value of the plant at the end of the contract to be EUR 600.

Scheme 3: Recording of the transaction in the contractor’s accounts

Source: Authors.

The contractor is obliged to obtain the necessary sources of financing for the purpose of settling the capital value of the project (1). During the exploitation of the project (use period), the contractor successively delivers an invoice to the client for the service of plant availability provided (2). The executor calculates the depreciation of the investment on someone else's property (3) and closes the receivables from the collected account (4).

Scheme 4: Recording of the transaction in the client's accounts

Source: Authors.

The contracting entity, being the legal owner of the plant, records the plant off-balance sheet at capital value[7] (1). During the term of the contract, off-balance sheet items will decrease by 1/10 of the purchase value of the plant each year (1a1, 1a2,...1a10). From the current (operational) budget, it records successively, as it receives a periodic invoice for the availability service obtained, on expenditures and liabilities (2). Payment of invoices closes obligations (3). Upon maturity of the contract at market (estimated) value, the plant will be recorded in the accounts of non-financial assets and social capital (4).

7. Concluding observations

Procurement of the service of availability of facilities, devices or equipment to contracting authorities could be an acceptable procurement model because there is a high probability of achieving better value for money, procurement does not have to be recorded in the public debt, there are generally no initial payments and administrative supervision and records are significantly simplified during the contract period. This should be complemented by the benefit for those contracting entities that do not have the administrative capacity to acquire more complex facilities, devices or equipment.

This text presents the possibilities of applying life-cycle costing (LCC) criteria, the procedure of co-financing capital assistance contracts and the procedure of recording transactions in the accounts of clients and contractors.

Authors:

  • Prof.dr.sc. Davor Vasiček, University of Rijeka, Faculty of Economics and Business. davor.vasicek@uniri.hr.
  • dr.sc. Damir Juričić, University of Rijeka, Support Center for Smart and Sustainable Cities. damir.juricic@uniri.hr.
  • M.Sc. Damir Medved, University of Rijeka, Support Center for Smart and Sustainable Cities.damir.medved@uniri.hr.

[1] Eng. Life Cycle Costs.

[2] An interesting example is the Krško nuclear power plant, which has refuelling cycles every 18 months – most of the time it operates at practically nominal power.

[3] Source: https://www.nature.com/articles/s41467-021-26355-z

[4]Source: https://www.researchgate.net/publication/331968857_Reliability_Availability_and_Maintainability_Analysis_for_Grid-Connected_Solar_Photovoltaic_Systems_Accepted_for_publication_in_energies_Mar_22_2019 (11.11.2023.)

[5] For example, if you want to achieve more than 99.99% availability of the system during the year may require the installation of additional redundant systems and a repeated increase in the cost of the lined up (is such functionality really needed?)

[6] https://ec.europa.eu/eurostat/documents/3859598/5925693/KS-02-13-269-EN.PDF/44cd9d01-bc64-40e5-bd40-d17df0c69334 (8.11.2023.)

[7] In the procurement procedure, each tenderer shall report the capital value of the installation in the life cycle cost projection table.


dr.sc. Damir Juričić – writes about economics and finance
mr. sc. Damir Medved – writes to technology and communities

Views: 49

Categories
Expert texts

EU Combined Financial Instruments for Energy Communities  

Although the regulations enabling the establishment and operation of energy communities entered into force 16 or 10 months ago, in the Republic of Croatia there are still no energy community has been established according to these regulations despite the great interest of citizens and NGOs that strongly promote them. The reason is, obviously, in regulations that neither reflect the spirit of the EU reference directive nor adequately format the modern market of so-called civic energy. The current rules are not aligned with the characteristics of modern renewable energy supply and demand. In particular, it should be noted that the existing aforementioned regulations place citizens of the Republic of Croatia in a somewhat subordinate position in relation to citizens of other Member States with regard to the possibilities and potential of using and sharing renewable energy within energy communities. The aim of this article is to point out the complexity of the operation of energy communities and to encourage the competent ministries to program a specific combined financial instrument of the EU specifically for energy cooperatives.

INTRODUCTION

Citizen energy communities are business formations in which citizens come together to exploit the benefits of self-generated renewable energy less business costs. Although the term “energy communities” is generic, a real community will take one of the possible legal forms: cooperatives, associations, foundations and the like. Considering the whole business activities that are expected in the life cycle of an energy community whose framework is determined by the Electricity Market Act, the most likely legal form will be a cooperative, i.e. the energy community will be established and operate according to the regulations governing the establishment and operation of cooperatives. Unfortunately, for the time being, it will not be possible to establish itself as a company in the Republic of Croatia, although Directive (EU) 2019/944 also makes such a legal form possible.

Although the purpose and purpose of the association of citizens, public authorities and entrepreneurs is to share their own energy, it is possible to expect in real life business activities ranging from the exclusive sharing of energy produced (which implies that the members of the cooperative have already carried out activities of setting up systems for the production and/or storage of energy) to the association due to investments in renewable energy production facilities, sharing in demand response (members of the energy community invest in facilities through a formed legal entity and then share and manage the energy produced). Therefore, the structure and scope of business activities can be quite complex, so the future members of the energy community are asked about its optimal organization, economy, management and financing.

By transposing the aforementioned EU Directive into domestic legislation, the Republic of Croatia accepted the idea of energy communities as a socially justified and desirable instrument of energy transition. If this is true, then public policies should also be articulated in such a way as to facilitate and encourage the establishment and operation of such business formations with available resources. Moreover, energy communities could also be an effective instrument and measure in the framework of accelerating the deployment of renewable energy as foreseen in the recently adopted Regulation (EU) 2022/2577. Acceleration One of the resources could be the Multiannual Financial Framework 2021-2027, especially in the part related to financial instruments of the European Union, namely combined financial instruments with a non-repayable component to encourage the preparation and establishment of energy communities and a repayable debt component to partially settle the capital value of the project.

ENERGY COMMUNITIES IN THE EUROPEAN UNION

In recent years, the EU has increased its climate and energy ambition and has recently committed to reducing it by 55.% net greenhouse gas emissions by 2030. A key mechanism for the implementation of these objectives is the energy transition towards renewable energy sources. With the adoption of the Renewable Energy Directive (RED I) in 2009, the EU set an overall target of 20% the share of energy from renewable sources in final energy consumption by 2020. It was significantly revised in 2018. (RED II), setting a new EU target of at least 32% the share of renewable energy sources in final energy consumption by 2030. RED III aims to create a fully integrated energy market, which also creates space for innovation on both the electricity grid and the market. In order to achieve this objective, significant investments are needed in decentralised energy sources, such as photovoltaic or wind power plants, energy storage, electric vehicles or heat pumps, and all kinds of smart energy solutions designed to control and manage household energy consumption in order to make efficient use of Europe's electricity infrastructure. However, in addition to investments in physical infrastructure, it is equivalent to finding new organisational, production and economic forms in the context of wider decentralization and democratization of energy consumption and production processes.

Energy communities are one of such new innovative organizational forms, and in most EU organizations that are not primarily focused on commercial business. Although they are engaged in economic activities, their primary purpose is to provide social, economic and environmental benefits to the community, not to generate profits. The EU legislative framework knows two types of such structures: citizen energy communities (CEC) and renewable energy communities (REC). Both communities can bring together citizens, local authorities or small companies, but only the REC can bring together small and medium-sized enterprises (SMEs). While the CEC can produce and use a combination of renewable and non-renewable energy sources, the REC is dedicated exclusively to renewable sources. Moreover, the REC often also have a local context: communities should be organised in close proximity to the renewable energy projects they own or develop. As a type of community-driven initiative, the CEC and REC play a key role in social innovation by reflecting a fundamental change in consumer behaviour. Traditionally, passive consumers become co-owners of renewable energy sources and promote a socially just model of energy so-called prosumerization (energy production and consumption). Through the context of local energy sharing, for example, owners of photovoltaic plants share their generated energy with community members who cannot afford such plants or do not own adequate installation areas. Energy communities provide wider and more democratic access to renewable technologies also for community members who do not have own funds to invest in RES (endangered social groups, pensioners, etc.). It is expected that approximately 264 million European citizens by 2050 join the energy market as self-generators (prosumers), producing up to 45% renewable electricity. However, there are also numerous problems, primarily with the transposition of EU regulations for CEC and REC, which creates great differences in the possibilities of implementing civic energy projects and creating energy communities. An example is given in Figure 1 with an illustration of the scale of the problem.

Figure 1: Proportion of transposition of EU regulations

Source: https://www.rescoop.eu/ – transposition of EU regulations into national legislation.

The EU proposes to ensure that by 2025 at least one renewable energy community is established in each municipality with a population of more than 10,000 people. It will also support Member States in implementing the common self-consumption framework and the energy community. The Just Transition Fund (JTF), which is the EU's funding tool for regions dependent on fossil fuels and greenhouse gas intensive industries, should complement the 2021 revision of the RED, financially supporting energy communities across Europe.

This is not only a financial challenge, but also an organizational one. It requires the active participation of end-users and citizens. Energy communities can make a huge contribution in this regard. As stated in the recent EU State of the Energy Union Report, at least 2 million people in the Union are already involved in more than 7,700 energy communities, and engagement is on the rise. Energy communities in the EU have contributed with 7% Nationally installed RES capacities – estimated at 6.3 GW.

The number of communities is very variable, but ultimately the number of communities is not so important but the number of active members. Differences are significant, for example the largest Belgian community Ecopower has more than 65,000 active members, with huge production, management and financial strength where they actively participate in the energy markets, while German communities are typically smaller and have about a hundred members, but are associated with aggregators that form virtual power plants and take on complex functions of management and trade. A good example is Next Kraftwerke from Germany, which brings together fifteen thousand producers and small communities, and currently has a capacity of over 11,000 MW and actively traded with more than 15 TWh energy.

Table 1: Number of active energy communities in Europe

CountryNumber of active energy communities (2020)
Germany1750
Denmark700
Netherlands500
United Kingdom431
Sweden200
France70
Belgium34
Poland34
Spain33
Italy12

Source: https://energy-communities-repository.ec.europa.eu/support/toolbox/energy-communities-overview-energy-and-social-innovation_en (17.1.2023.)

For a better understanding of the problems of energy communities in the EU, it is convenient to introduce a matrix view that recognizes the 4 organizational archetypes involved in the processes of energy production and trade and the 4 dimensions that affect the realization of each of these archetypes. Table 2 illustrates the interrelationship between them and the interactions are now more clearly visible. Each dimension has an impact on archetypes, but some influences are more significant, for example, the social dimension is most pronounced in cooperatives, and the least present in aggregators because they act on different bases.

Table 2: Dimensions and Archetypes of Energy Communities

In 2019, a survey was conducted by the European Commission among the EU Member States that are the main benefits of establishing energy communities. The most important values identified by Member States relate to the renewable aspect of the Energy Community project:

  • Boosting the local economy and investing in renewable energy sources;
  • Reducing end-consumer bills;
  • Guaranteed production and consumption of green energy in local communities;
  • Easy access to renewable energy for all consumer groups and not only for the privileged;
  • Use of local resources for plant construction and energy production;
  • Access to new sources of capital through direct engagement of individuals;
  • Local energy management and optimisation;
  • Peer-to-peer trading;
  • Self-generation and self-consumption for a wider range of users;
  • Changing existing paradigms, introducing new principles such as demand response – Demand/Response;
  • Development of new services, such as charging electric vehicles;
  • Ownership and democratisation of natural and productive resources;
  • Access to new sources of capital through direct engagement of individuals;
  • A different approach to the development of the distribution network (distributed).

It can be concluded that there are still significant technical, social, regulatory and economic differences in the EU and the processes of change are too slow in many Member States (Croatia is a good example). But the process of energy transition and expansion of energy communities is unstoppable.

ESTABLISHMENT AND BUSINESS OF ENERGY COUNTRIES

Although, on the basis of existing regulations, it is possible to establish an energy community, e.g. an energy cooperative under the regulations governing the establishment and operation of cooperatives, their operation, i.e. operation, will not be possible. The reason is, most likely, banal, and concerns the operational ability of the operator of the Croatian energy system to recognize and process the sharing of energy produced by an energy cooperative. In addition, the existing limitation of the number of members of an energy cooperative to those connected to the same transformer station reduces such business to a level of pointless inefficiency. This inefficiency stems from the disproportion of the costs of sharing the current surpluses of energy produced and its equivalent availability and the effects of shared energy. In this regard, it is also necessary to limit the operation of energy cooperatives in accordance with the rules of non-profit organizations. This restriction brings significant uncertainties into the operation of an energy cooperative because the regulations governing the operation of cooperatives allow the generation of surplus revenues over expenditures. This excess of revenue over expenditure may be generated by the energy community, for example, through the sale of aggregated energy on the market. Such a possibility is permitted by the provision of Article 26.11. Therefore, it is lawful for an energy cooperative to sell, through an aggregator, the energy produced on the market. It will generate revenue on this basis. Also, energy sharing for charging electric vehicles owned by cooperative members will most likely refer to a certain price, so this part of energy will also be recorded as income of the energy cooperative. The same impact on revenues will also be made by the energy produced shared with the non-production or storage members of the energy cooperative, the passive members of the cooperative. Sharing energy with such members would most likely not take place without the assigned value, price. The value of this energy will be recorded as revenue. In addition, an energy cooperative that invests on the assets of its members by settling capital costs from other debt sources of financing will most likely, in the period of repayment of debt sources, collect certain fees from its members for the purpose of settling due liabilities on the basis of long-term debt sources of financing. The question to be answered is related to the accounting and tax treatment of such transactions.

On the other hand, the operation of an energy cooperative is not a cost-free operation. These are costs such as capital investment, plant maintenance costs and replacement of worn-out parts, management costs, interest, etc. Therefore, it is a relatively complex business system that will be difficult to maintain in the circumstances of equal income and expenditure.

What, in nature, does it mean to set up and operate an energy cooperative? What processes are we talking about here?

These are processes that can be structured according to the following units:

Preparation of the energy cooperative

  • Communicating with interested citizens, businesses, public authorities;
  • Organization and implementation of a workshop in order to inform future members of the cooperative about the upcoming activities, the goals of the cooperative, the aim is to achieve the establishment of the cooperative, the basic activities they will engage in, the manner of regulating mutual relations, the cost of establishment and others;
  • Workshop conclusions, follow-up and information on the establishment of an energy cooperative.

Establishment of an energy cooperative

  • Organisation of the inaugural assembly;
  • Drafting of the agenda;
  • Drawing up the rules of the cooperative;
  • Keeping the Assembly and Minutes;
  • the possible establishment of a supervisory board;
  • Forming documentation for notarial certification;
  • Organisation of membership deposit;
  • Registration of the cooperative in the Commercial Court Register;
  • Registration of cooperatives in the register of business entities of the Croatian Bureau of Statistics;
  • Registration of cooperatives in the Register of Cooperatives and Cooperative Associations of the Croatian Cooperative Association;
  • Opening of the business account of an energy cooperative;
  • Creation of the energy cooperative's web (website).

Establishment of energy infrastructure

  • Testing and measurement of an existing installation;
  • Structure of installations;
  • Connecting the plant.

Energy Community Business

  • Records of energy sharing;
  • Periodic reporting of energy produced and shared.

Only the basic processes are listed. Each of them entails additional activities. Operational business may also include processes such as: design organisation, drafting of contracts between investors and contractors, obtaining offers from contractors, financing organisation, organisation of supply and installation of plants, supervision of works/installation of plants, testing of plants, organisation of obtaining authorisation to operate plants, management of energy cooperative accounting, organisation of processes when excluding existing and involving new members, preparation of periodic financial reports, design of the IoT network of sensors for monitoring energy consumption, management of the IoT network of sensors for monitoring energy consumption, organisation and implementation of periodic meetings of the assembly and supervisory board, organisation of aggregation for the purpose of selling surplus energy, organisation of preventive and reactive maintenance of plants, connection of energy cooperatives, etc.

Without specifically entering into the organisation and operation of energy communities in which entities have merged with already installed installations for the production and/or storage of the energy produced, energy communities whose operational operations are preceded by investment activities could be organised and financed as shown in scheme 1:

Scheme 1: Establishment, financing and operation of an energy cooperative

Source: Authors.

An energy cooperative (1) shall be established by at least seven founders (2). The purpose of establishing the cooperative is the individual production of renewable energy (5), its sharing among the members of the cooperative and, possibly, storing surplus energy and charging electric cars. Independently of the founder, the energy cooperative can also be joined by members (6) who will not invest in plants but buy / take over surpluses of energy produced at a lower price than that from the grid, and higher than the producer price from photovoltaic/battery plants. Investment in energy facilities of energy cooperative can be financed from commercial sources (3) and EU financial instruments (4). Given the complex structure of the establishment and management of an energy cooperative, the cooperative may use the services of specialised experts for the establishment and business management of energy cooperatives (7).

CHARACTERISTICS OF EU FINANCIAL INSTRUMENTS FOR ENERGY COMMUNITIES

In addition to non-repayable support, from the Multiannual Financial Framework 2021 – 2027, financial instruments (repayable instruments) in the form of debt, guarantee and equity (equity) source. The most important feature of financial instruments in MFF 21-27 is the possibility to combine non-repayable grants (grants) with repayable grants (debt, guarantee and equity). instruments. In general, the procedure for obtaining financial instruments is significantly simpler than the procedure for obtaining non-repayable grants.

Financial instruments are products of European funds with terms more favourable than commercial substitutes. The purpose of financial instruments is the efficient development of cohesion policy. For economically eligible projects, financial instruments shall assist implementation and shall always be returned to the provider. What is particularly important is the imperative that financial projects are used in projects that generate revenue or savings, which renewable energy plants certainly belong to. As renewable energy generation projects generate savings as the difference between the unit price of grid electricity and installations and the reduction of greenhouse gas emissions, partial financing of energy community based projects with a price below the market price of funding sources could be economically rational and socially acceptable.

While, in general, the purpose of financial instruments is to enable projects to be enhanced with commercial content by increasing the likelihood of long-term sustainability, the purpose of financial instruments for energy communities could be to achieve societal benefits due to lower energy costs, increased affordability, reduced risk of adverse effects of climate change, unburdening of the electricity transmission and distribution system, increased GDP and contributing to greater prosperity for citizens.

The main features of the financial instruments under MFF 21-27 are as follows:

  • They must not be used to refinance existing contracts, but to support any type of new investment in line with the underlying policy objectives;
  • Support to final recipients for investments in tangible and intangible assets and working capital that are expected to be financially viable and for which sufficient financing from market sources is not available;
  • Only for investments that are not physically completed or fully implemented at the date of the investment decision;
  • They can be combined with grants in a single FI operation and under a single contract. In this case, the rules for FI apply;
  • Grants shall not be used to reimburse support received from financial instruments;
  • VAT is an eligible cost for FI and the rules for grants apply in combination with the grant;
  • Financial instruments are granted by the managing authority (e.g. MRDEUF) or may be entrusted to the EIB or HBOR;
  • The value of the grant in the same operation shall not exceed the value of the financial instrument.

Unlike the so-called non-combined financial instruments so far, the current combined can be: a grant in combination with a debt instrument, a grant in combination with a guarantee instrument, a rebate debt financial instrument (performance-based grant), a technical assistance grant combined with a financial instrument and similar combinations. In order for financial instruments to be available to beneficiaries, the ministry responsible for the economy shall identify the need and the ministry responsible for EU funds shall program. If we accept the social justification and the need of financial instruments for faster establishment and development of energy communities, basic prerequisites for programming will be created.

Given the current legal framework, relatively small installed capacity of photovoltaic power plants and even smaller batteries, an appropriate difference between the prices of electricity from the grid and photovoltaic plants with a tendency to increase this difference and the limitation of the energy community to the same transformer station, it is possible to expect a relatively large number of newly established energy communities in the next five years. But there is also a noticeable risk that such relatively uneconomic small communities may not be established, so such a legal framework can be considered established to slow down the production and sharing of civic energy. Since such a regulation is not in line with EU policies in this area, a change in the regulations in this section is also to be expected. In the event of changes to the regulations that would extend the establishment of energy communities instead of the same transformer station to more than one, settlement or region, the number of newly established energy communities could exceed 200 in the next 5 years of an average installed capacity of more than 100 MW of total annual energy output of approximately 100 GWh of energy. Thus, it could be a significant number of citizens involved in self-generation, a significant reduction in energy costs, a reduction in greenhouse gas emissions of approximately 10 000 TCO2 and an adequate relief of the electricity system. Approximately €130 million of total funding will be needed to achieve the roughly estimated market described. Total sources of funding could consist of own equity, debt and other debt sources. Part of other debt sources could be the financial instruments of the EU. The inclusion of EU financial instruments could increase the propensity to include other sources of financing due to the reduced overall investment risk. This also raises the issue of the characteristics of EU financial instruments in terms of maturity and the structure of the combined instrument consisting of a non-repayable grant and a loan. Possible features are shown in Table 2:

Table 2: Possible features of a combined EU financial instrument for energy cooperatives

Source: Authors.

According to the author, based on the analysis of numerous investment projects in rooftop and terrestrial photovoltaic power plants, the share of the non-repayable grant could be up to 15% (to cover the costs of setting up a cooperative, developing projects, etc.) and a loan of at least 85%In order to ensure the liquidity of the operation of the project (energy cooperatives), i.e. the condition under which, from the savings achieved, the due liabilities to the defendant debt sources of financing (commercial loan and EU financial instrument) are fully settled, the repayment period should be no less than 10 years. The share of EU combined financial instruments in total sources of financing could be at least 50%.

CONCLUSION AND RECOMMENDATIONS

The current legislative framework is certain is not conducive to the establishment and operation of energy communities; regardless of their legal form. Limiting to one transformer station is an insurmountable obstacle to the development of energy communities. Eliminating this restriction would create assumptions for the establishment of a significant number of energy cooperatives across the country. Given the significant investment needs in energy plants of energy cooperatives, the inclusion of combined EU financial instruments in the structure of total sources of financing would significantly accelerate the development of this new market, and such opportunities exist in the MFF 21-27.

Given the complex operation of energy cooperatives, the development of the market of specialized services in the field of establishment and management of energy cooperatives is also expected.


Damir Juričić – writes about economics and finance
Damir Medved – writes to technology and communities

Views: 45

Categories
Expert texts

Establishment of energy communities in the Republic of Croatia

Entry into force Renewable Energy Sources and High-Efficiency Cogeneration Act (OG 138/21), Electricity Market Act (OG 111/2021) i Ordinance on licenses for performing energy activities and keeping a register of issued and withdrawn licenses for performing energy activities (Official Gazette 44/2022) preconditions for the establishment of energy communities in the Republic of Croatia have been met, for the purpose of association of citizens, entrepreneurship and public law bodies due to joint production, consumption at the place of production and sharing of produced energy among community members. The goal of establishing such formations is to achieve energy independence, reduction and stability of energy prices, greater efficiency in the use of energy produced due to sharing, etc.

However, it is socially justified and economically rational to ask questions about whether these regulations provide an enabling legislative and institutional framework for launching intensive investment activities in civic renewable energy and whether the above objectives will be achieved in a socially and economically acceptable period? The general impression is that the Ordinance represents another instrument for competent public bodies and public companies in preventing activities related to the establishment and operation of energy communities.

Introduction

The Electricity Market Act provides for the possibility of association of citizens, entrepreneurship and the flow of public authorities in the so-called Energy communities, and the Ordinance on licenses for performing energy activities and keeping a register of issued and withdrawn licenses for performing energy activities determines the procedure and rules for establishing energy communities;. Article 26. The Electricity Market Act stipulates that citizens can come together to jointly produce and share the generated energy for their own consumption. This will be done through so-called energy communities. Citizen energy community is a legal entity established in the territory of the Republic of Croatia, whose shareholders or members voluntarily come together to benefit from the exchange of energy produced and consumed in a certain spatial area of the local community.

The legislation allows citizens to team up with public law entities such as cities, municipalities, institutions or utility companies in order to better exploit the potential of producing and (in-house) consuming (in-kind, sharing) the electricity produced. The envisaged activities of the energy community are, inter alia, the generation of electricity from renewable sources, the supply of electricity to the community; power management; aggregation of community members energy storage, energy efficient, charging of electric vehicles with energy produced, etc.

It is also important to draw attention to the fact that energy communities are based on voluntary and open participation whose primary purpose is to provide environmental, economic or social benefits to their members rather than generate financial returns. The legislator seeks to achieve this purpose of establishing energy communities by coercion by obliging members of the community to conduct business and business books in accordance with the laws governing the financial operations and accounting of non-profit organizations. These regulations in the Republic of Croatia deviate from the idea of Directive (EU) 2019/944, which explicitly allows a company as a legal form of an energy community.

Point 8. Annex I of the Ordinance on licenses for performing energy activities and keeping a register of issued and withdrawn licenses for performing energy activities defines the documentation and necessary evidence for an energy community to perform the activities for which it is established - energy production and sharing. The energy community of citizens, entrepreneurs and public authorities must first and foremost assume its legal personality, usually in the form of a cooperative, association or foundation. Subsequently, that legal person must apply for a licence to carry out energy activities and eventually start the work and activities for which it was established. It is a complex procedure both in the phase of establishment and preparation, and later in the phase of conducting business activities.

Activities during the establishment and operation of the energy community

Energy communities will most often be established as associations or cooperatives. The procedures for the establishment of such legal formations are determined by the Law on Associations (NN Nos 74/14, 70/17, 98/19) and the Cooperatives Act (OG 34/11, 125/13, 76/14, 114/18, 98/19).

Association

Association is any form of free and voluntary association of several natural or legal persons who, for the purpose of protecting their interests or advocating for the protection of human rights and freedoms, the protection of the environment and nature and sustainable development, and for humanitarian, social, cultural, educational, scientific, sports, health, technical, information, vocational or other beliefs and goals that are not contrary to the Constitution and the law, and with no intention of gaining profit or other economically estimable benefits, subject to the rules governing the organisation and operation of this form of association. The activity of the association is based on the principle of non-profit, which means that the association is not established for the purpose of making a profit, but may carry out an economic activity, in accordance with the law and the statutes. The Association acquires legal personality on the date of its entry in the Register of Associations of the Republic of Croatia.

The Association may establish at least the Three Founding Fathers. The founder of an association may be any natural person with legal capacity if his legal capacity has not been withdrawn in the part of concluding legal transactions and a legal person. The association is obliged to lead List of its members which is kept electronically or in another appropriate manner and must contain information on the personal name (name), personal identification number (PIN), date of birth, date of accession to the association, category of membership, if they are determined by the statutes of the association and the date of termination of membership in the association, and may contain other information. The list of members shall always be made available to all members and competent authorities, upon their request.

Statut is the basic general act of the association adopted by the assembly of the association. The Statute of the Association contains provisions on the name and seat, representation, areas of activity in accordance with the goals, goals, activities that achieve the goals, economic activities in accordance with the law, if performed, the manner of ensuring the public activity of the association, the conditions and manner of membership and termination of membership, rights, obligations and responsibilities and disciplinary responsibility of members and the manner of keeping a list of members, the bodies of the association, their composition and the manner of convening sessions, election, revocation, powers, decision-making and term of office and the manner of convening the assembly in case of expiry of the mandate, election and revocation of the liquidator of the association, termination of the association, property, the manner of acquiring and disposing of property, the procedure with property in case of termination of the association and the manner of resolving disputes and conflicts of interest within the association. The statutes of the association may contain provisions on the territorial functioning of the association, the sign of the association and its appearance and other issues of importance to the association. Once established, the association must be entered in the register of associations.

Application for registration the Association shall be enclosed with the minutes of the work and decisions of the founding assembly, the decision of the assembly to initiate the procedure for entry in the Register of Associations, if such a decision is not adopted at the founding assembly, the statutes, the list of founders, the personal names of the persons authorised to represent and the personal name or name of the liquidator, an extract from the court or other register for a foreign legal person of the founder of the Association, a copy of the identity card or passport for founders, liquidators and persons authorised to represent, the approval or approval of the competent body to perform a certain activity, when this is prescribed by a special law as a condition for registration of the Association. The competent administrative authority shall adopt solution on the application for registration within 30 days from the date of submission of a valid application for registration.

Assets of the Association make funds that the association acquired by paying membership fees, voluntary contributions and gifts, funds that the association acquires by performing activities that achieve goals, financing programs and projects of the association from the state budget and the budget of local and regional self-government units and funds and/or foreign sources, etc. Economic activities the association may carry out activities in addition to those pursuing its objectives as laid down in the statutes, but may not carry them out for profit for its members or third parties. If an association achieves a surplus of income over expenditures in the performance of its economic activity, it must, in accordance with the statutes of the association, be used exclusively for the achievement of the objectives laid down in the statutes. Associations are obliged to keep business books and prepare financial reports in accordance with the regulations governing the manner of financial operations and accounting of non-profit organizations.

Cooperative

Cooperative is a voluntary, open, autonomous and independent society governed by its members, and through its work and other activities or the use of its services, pursues, advances and protects, on the basis of unity and mutual assistance, its individual and common economic, economic, social, educational, cultural and other needs and interests and achieves the objectives for which the cooperative was founded. The cooperative is based on cooperative values: self-help, responsibility, democracy, equality, equity and solidarity, and the moral values of honesty, openness, social responsibility and care for others. Relationships between its members are regulated by the cooperative at the Cooperative Principles: voluntary and open membership; supervision of the business by the members; economic participation of cooperative members and distribution; autonomy and independence; education, training and information for cooperative members; cooperation between cooperatives and care for the community. The state, local and regional self-government encourage the development of cooperatives through measures of economic and social policy and other measures to improve the development of cooperatives and the cooperative system.

A cooperative may establish at least the Seven Founding Fathers fully operational natural persons and legal persons. With the establishment of the cooperative, the founder of the cooperative becomes a member of the cooperative and is entered in the directory of cooperative members. The founding assembly shall be convened by the founders of the cooperative. The founding assembly shall be chaired by one of the founders. The persons who have signed a declaration of acceptance of the cooperative rules shall have the right to vote at the founding meeting. The founding assembly takes decisions by a majority vote of the founders of the cooperative and adopts the rules of the cooperative. The rules of the cooperative are adopted when the number of founders required for the establishment of the cooperative signs a declaration of acceptance of the rules, which must contain the name and surname, date of birth, domicile, OIB, number and mark of the personal identification document of a natural person, i.e. the company, registered office and OIB of a legal person. After adopting the rules of the cooperative, the founding assembly of the cooperative elects the bodies of the cooperative and the rules of the cooperative, makes a decision on the entry or payment of the role of members and other decisions related to the establishment of the cooperative.

Cooperative rules contain provisions on the company, registered office and object of business; internal organisation; conditions and manner of acquiring membership, form and amount, entry and return of member roles, rights, obligations and responsibilities of members, conditions and manner of termination of membership and other issues related to membership in the cooperative; Cooperative bodies: their competence, rights and obligations, the procedure for election and revocation, the mandate of members, the method of decision-making and other issues related to the work of cooperative bodies; the representation and representation of the cooperative and the rights and powers of the manager; the assets of the cooperative and the manner in which the assets are to be disposed of; the use of profits, i.e. surplus revenues, the coverage of losses, i.e. operating deficits; the part of the profit or surplus of income allocated to reserve requirements; status changes and dissolution of the cooperative; information to members and business secrets; the manner and procedure of amending the rules and the like.

A member of a cooperative may only be a person who participates directly in the work of the cooperative, who operates through the cooperative or uses its services or otherwise directly participates in the achievement of the objectives for which the cooperative was founded and cannot transfer its membership to another person.

Cooperative assets constitute the members’ roles, the assets acquired through the activities and other activities of the cooperative and the assets acquired through other means, which belong to the cooperative and serve to carry out its activities and meet its obligations. Assets that are not in the function of performing the activities of the cooperative may be sold or leased by the cooperative by a decision of the assembly, and the realized funds shall be directed to the operation of the cooperative.

Bet a member of the cooperative can be a basic and additional bet. The amount of the basic bet is the same, and its amount is determined by the assembly and may not be less than HRK 1,000.00. An additional bet is a bet that a cooperative member can make with a basic bet. The amount of the additional stake is the same, and its amount is determined by the cooperative's assembly. The role of a cooperative member shall be entered in the name of the cooperative member in the directory of cooperative members. As a rule, the bet is made in cash. If the bet is placed in items or rights, the monetary value of the item or right is assessed by a court expert. If a member of the cooperative enters as a stake a thing or right that is given into the ownership of the cooperative, the member of the cooperative is liable for the real and legal defects of the thing as if it were a sale.

A cooperative may carry out an activity with a view to making a profit, and may perform activities in order to meet the needs of its members with no intention of making a profit. From the profit determined by the annual calculation, the cooperative is obliged to cover losses from previous periods, and after covering losses from the previous period, from the profit determined by the annual calculation – the cooperative allocates and separately records at least 20% for the development of the cooperative and at least 5% to reserve requirements until those reserves reach the total amount of members' contributions.

The process of establishing and operating an energy community can be summarized into three groups of processes:

  1. Determining the legal personality of the Energy Community;
  2. Registration of energy activity and
  3. The business of the energy community.

Each of these groups of processes has its own sub-processes that need to be implemented in order to achieve the final goal of the community business.

Determining the legal personality of the Energy Community

The Energy Community, as stated above, will most fiercely be established as a cooperative or association. If the community acquires legal personality as an association, at least three founders will be required, while in the case of a cooperative, seven founders will be required. Interested members will need to gather and express their intention to form a community and define the purpose and goals of establishing a community. Then, in accordance with the provisions of the law governing the chosen legal form, it will prepare a list of founders with personal data, determine the company and define the rules that end with the signing of the declaration of acceptance of the rules. It is followed by the convening of the founding assembly and the entry in the register of associations, that is, cooperatives in the register, which acquires final legal personality.

Registration of energy activities

Once the energy community has become a legal person, it will apply for a licence to carry out an energy activity. The application is submitted on the Application form for the issuance of a license for performing energy activities (ZDOED) and submitted to the Croatian Energy Regulatory Agency (HERA). The application form shall be as set out in Annex IV. Ordinance on licenses for performing energy activities and keeping a register of issued and withdrawn licenses for performing energy activities. The application shall be accompanied by:

  • Completed and certified application form for obtaining a license for performing energy activities;
  • Statute of the selected community formation from which it is plausible that it is registered for energy activities;
  • The founding act, i.e. the act on the basis of which the legal person is registered, as well as other documentation showing that the citizen energy community meets the requirements for citizen energy community from the law governing the electricity market;
  • List of all shareholders and all members in the citizen energy community from which they are for each shareholder or member;
  • Notarial certified statement of the responsible person regarding the control of medium and large enterprises;
  • Extract from the relevant register by which the applicant proves that the citizen energy community operates on the basis of the law governing the financial operations and accounting of non-profit organisations;
  • Evidence of technical qualification;
  • Proof of professional competence and
  • Proof of financial qualification.

The technical qualification shall be demonstrated by:

  • Proof of ownership or right to use the business premises on the basis of a lease agreement or other contract concluded with the owner of the business premises;
  • Description of information, communication and other systems for performing energy activities of organizing citizen energy community;
  • Existing contracts with other legal entities having an impact on the technical qualification of the applicant;
  • a three-year development and investment plan for the performance of energy activities, and
  • Conditions for participation in the citizen energy community adopted by the citizen energy community.

Special attention is drawn here to the three-year development and investment plan, which presents in the nature of projections of the production and consumption of energy produced at the level of all members of the energy community and the balance of planned energy produced and consumed based on historical consumption analysis and projections in the planning period.

Professional competence shall be demonstrated by:

  • the organisational chart or part of the applicant’s organisational chart relating to the energy activity;
  • a list of workers, community members or shareholders in the energy community who perform tasks in the energy activity of organizing an energy community of citizens, with an indication of the level of education, workplace and job description according to the systematization of jobs and jobs signed by the responsible person in the legal person;
  • Existing contracts with other legal entities that have an impact on the professional competence of the applicant.

Since, at least in the first period of the formation of the market of energy communities, it will have a smaller number of members, inter alia because the energy community can be formed exclusively around one, the same transformer station, it will be economically irrational to expect employment of workers and meet the goals in terms of economic and financial justification of investments in energy plants. Professional competence is likely to be demonstrated mainly through the qualifications of members or shareholders, most often through a contract (outsource) with companies specializing in the establishment, registration, installation and maintenance of energy plants, monitoring, business records and reporting on the operation of energy communities. Financial qualification is evidenced by the BON-1 and BON-2 forms, i.e. the commercial bank's statement on the solvency of the legal person.

Energy Community Business

Once it has been established and acquired legal personality and has obtained a licence to carry out an energy activity, the energy community may start operating. Although entities (citizens, companies and public authorities) can come together in the energy community after having procured PV facilities individually, it is most likely that, in practice, entities will only acquire and set up facilities once the community has been set up. The reason for such an attitude will be the benefit in the form of a lower unit purchase price of the plant if a larger quantity is procured, as well as the reduction of risk due to the pooling of knowledge and experience on the choice of the plant, installation, testing and commissioning, and the financing and management of community business.

However, the energy community (cooperative, association) is by no means a static formation that requires the activity of its members exclusively at the stage of establishment and installation of the plant. The Community, as pointed out above, operates according to the principles of a non-profit organisation, which means that it is necessary to keep records on an ongoing basis in accordance with the accounting of non-profit organisations. Although a large number of monthly transactions is not expected, it is still not known how energy sharing processes will be treated and how they will be recorded in the accounts. They will also need to convene and participate in the assemblies of the association or cooperative, prepare reports and adopt them, and archive documents. Also, when obtaining permits, a business plan should be prepared, so it will periodically be necessary to compare the achieved business financial values with the planned ones and in case of deviations decide on activities.

Problems of infrastructure maintenance

The operation of the plant implies not only its installation, but also its maintenance. Given the long economic period of use (20, 25 and more years), this facility will need to be maintained. And here it is possible to take advantage of the effects of economies of scale where unit maintenance costs could be lower when this maintenance is contracted by the community compared to the individual prosumer. It will certainly be necessary (usually around the age of 12) to replace the inverter, which also needs to be acquired in the future. Purchasing more inverters could result in a lower unit price. Finally, at the end of the life cycle, questions can be raised regarding the termination of operations and the launch of a new investment cycle, as well as questions regarding the disposal of worn-out photovoltaic panels. All these activities are easier to carry out in the community.

Although the community is founded by a group of citizens, during the life of the facility and operation of the energy community, the interests of involving new members of the community are possible. This inclusion, if initially contractually well regulated, can be simple, as a result of which all members of the community will benefit more than the costs of including a new member. These effects are linked to software that manages monitoring and energy sharing. A greater degree of digitalisation of dwellings can produce greater effects of maneuverability and efficiency in energy consumption. In order to achieve this, the members of the community will consider, at the beginning of their activity, the benefit of installing components of so-called smart apartments or houses.

Profiling of households

It seems that the establishment of an efficient energy community today is inseparable from the process of profiling households, which includes the identification of the properties of consumers (household appliances) and the way in which they are used by the household. Such profiling of households is done through the sensory and metering infrastructure of a smart home, and allows precise planning and optimization of energy production and consumption. In addition to energy, economic optimization is also important, ie the use of energy or its sale when it is most economically justified as the standard functionality of platforms for managing energy communities. It will also be good to consider the possibility of contracting for the supervision of these processes outsource service. Eventually, the community will have some website of its own that it will also need to maintain in order to be functional and useful to its members. The activities of the business phase of community life do not include those related to possible energy aggregation and operations in the energy market, which represents a whole range of additional activities that need to be managed professionally.

Photo by Clark Tibbs he Unsplash

Financing the procurement of energy generation and sharing facilities

Photovoltaic power plants, smart housing (home) components, energy management and sharing programmes, business records systems, etc. can be procured in a number of ways depending on how energy communities organise themselves in relation to property ownership and risk sharing and, depending on this decision, how the procurement is financed. In practice, energy communities will most likely be organised in one of the three ways shown in scheme 1:

Scheme 1: Organisation of energy communities in relation to ownership and risk sharing (Source: Authors)

In Model A, members of the community purchase photovoltaic plants (FNE – photovoltaic power plants) individually. After installation or before, they come together in an energy community. Under Model B, entities first establish an energy community and then the energy community invests in facilities (usually on the roofs of its members). In Model C, citizens establish an energy community and contract the purchase of the availability service (ECaaS – Energy Comunity as a Service) photovoltaic installations in which the supplier installs its photovoltaic power plants on the roofs of members of the community and keeps them in the available state for the energy production of a member of the community.

Depending on the procurement model of the plant, an acceptable financing model will also emerge. The financing models are shown in schema 2:

Scheme 2: Models of financing the procurement of photovoltaic plants (Source: Authors)

In the case of model A, community members finance the installation of the plant from their own or others' equity and debt sources. In the case of model B, the sources of financing are obtained by the energy community (legal entity). These sources can be partly equity (from the roles of members of the community) and partly debt (from commercial banks or financial instruments of the European Union if they are programmed by the ministry responsible for European Union funds). In the case of model C, neither the members nor the legal entity have any connection with the sources of financing. They shall be acquired by the supplier of the availability service and shall become the property of the member or legal entity of the Energy Community upon expiry of the availability procurement contract.

Open points

Although regulations are in force on the basis of which it is possible to establish an adequate energy community, in practice there are a number of issues related to its lawful operational operations and issues related to hidden costs that often cannot be predicted due to creative surprises of the legal person responsible for connecting the photovoltaic power plant to the distribution electricity system. Below are a few questions.

Cost of sharing energy between members

Depending on the calculated total living costs of each individual installation of a member of the community and the intensity of production, the prices of energy produced by each member will be relatively similar or with minimal differences. Deviations from the average price will also depend on the chosen procurement model. However, it is very likely that the prices of electricity produced will be lower than the price of electricity from the grid. For illustration purposes, it will be assumed that the price of grid energy is 0.152 €/kWh and the price of FNE energy is 0.091 €/kWh. This is the difference of 0.061 €/kWh between power from the grid and FNE. When community members share electricity, they share services that have their own purchase price (producer price, in the example 0.091 €/kWh), this service is produced by community members and exchanged in a closed market bounded by the community.

In this regard, it is unclear at what value will citizens record shared energy? Will it be at the cost of production? Why should citizens not have a price difference (in the space between the production price of 0.091 €/kWh and the price of energy from the grid of 0.152 €/kWh, it is a space of significant 0.061 €/kWh that will, such expectations are in the future, increase)? This is an important issue related to community business. If members of the community are not allowed freedom in forming billing prices for shared energy then this should be clearly emphasized in order to reduce the risks of the establishment and operation of energy communities.

Tax treatment of energy sharing

The difference in the price of the movement of products, goods and services is subject to taxation. The price difference will be achieved by a member of the community when he/she shares the energy produced with the member at a higher price than his/her production price. The question to be clearly answered is whether this difference will be subject to value added tax and whether any difference between revenue (from shared energy) and expenditure (from the price of energy produced) will be subject to income or profit tax? Perhaps the solution would be to clearly communicate the view that energy sharing within the energy community, regardless of sharing prices and energy production prices, is not taxed. An important mission of civic energy or energy communities in the world is to reduce energy poverty, for example, many energy communities deliver energy to their needy members completely free of charge as part of a wider context of reducing social differences, and it is important to consider in this regard potential tax breaks for community members.

Capacity of the facility in relation to the member and the community

Quite simply, citizens who produce a greater amount of annual energy than the average annual consumption will be penalized by a reduced cost of taking over excess energy produced and/or a change of status. Does this rule apply when such a case occurs within an energy community? In an energy community, citizens can come together who, due to the technical conditions of the roof, are unable to produce the amount of energy they consume. On the other hand, some members of the community have the technical conditions to produce a significantly larger amount of energy than the amount they consume in a year. Can one member generate energy for themselves and the other(s) members of the community.

In such a case, can a citizen who produces for himself/herself and for the members of the community charge the shared energy at a higher price than his/her production price (his/her interest) but at a lower price than the network price (the interest of the non-energy producing member of the community)? If energy must be shared free of charge, then all members of the community will have an interest not to produce but to receive energy free of charge from another member, and the member who produces will have no interest in producing for another.

Cost of using the network in sharing processes

When members of an energy community share the energy produced, they share it through a distribution network, a network that connects a member of the community to a transformer station. After all, the energy community, as determined by our regulations, can only be formed by members connected to the same transformer station. This restriction is certainly not stimulating, nor socially justified because community members, citizens do not use hedging instruments against the risk of geographical distribution of sunlight. For example, it would be more efficient if members of an energy community were dispersed over a wider geographical area so that when one member is cloudy, the other is shining the sun and energy is used more efficiently.

An even better protection instrument is combined with wind generators and battery energy reservoirs. Such a restriction appears to be economically rational only for a distribution system operator who, after 30 years, is still unwilling to innovate. This is not only a matter of energy communities, but also of a large number of property owners on the Adriatic coast (almost 400,000 facilities) who would find it attractive to connect the production of a holiday home with their facility in the location of residence. In addition to the issue of national "connection" of production on their own facilities, it is similar to international connections within the EU (over 100,000 foreign real estate owners from Slovenia and Germany would welcome the option to use renewable energy from their facilities in Croatia in their home countries. It should be said immediately that there are no technical obstacles because they are such EU initiatives are in the research phase or have already been implemented within several transnational energy communities operating in the territories of several EU countries, so it is stated: evidently possible.

Will the shared energy be additionally burdened by the use of the distribution network or, possibly, the transmission network? These are issues of particular importance for the calculation of the financial profitability of a photovoltaic power plant because if the production price of energy from a photovoltaic power plant is increased by a potential fee for the use of the network, the difference highlighted above could be completely neutralized, so sharing will not be financially justified. The legislator has not yet commented on this. Moreover, the question of technically correct interconnection of community members with a private network should also be raised. If the price of a technically sound grid per unit of energy would be lower, why would such an option not be acceptable?

Qualification criterion

Another important issue is unclear. It concerns the professional qualifications referred to in Annex IV. Ordinance on licenses for performing energy activities and keeping a register of issued and withdrawn licenses for performing energy activities. Namely, the Ordinance stipulates that the energy community must have persons qualified to lead the community. It can be understood from the wording that this professional qualification is proven either by professional employed workers, or by a professional member of the community, or by a contract with an external supplier who is competent to perform the tasks that the community is engaged in. most likely, this statement in the previous sentence is correct, but it cannot be completely certain.

Also, the question remains what does it mean to be “professional”? Whether it is expertise in installing photovoltaic power plants, whether it is professional community management, whether it is professional business record keeping or professional maintenance. This remains an issue and it would be of great importance for citizens to have a clearer definition of the issue of expertise. 

Hidden costs – a practical view

One of the problems in forming energy communities is the problem of a large number of hidden costs for investors. They largely stem from inconsistencies and illogicalities in HEP's procedures, and then completely unrealistic projections of the economic profitability of investments appear. Such hidden (or unexpected) costs may reach 10-15% total capital value of the project This has a significant impact on the financial justification. Below is a description of one example from recent practice that points to numerous illogicalities, but also the possibilities for improving the process of connecting a photovoltaic power plant.

Installation of FN power plant on a family house

On a family house with two floors (ground floor and first floor) it is planned to install a photovoltaic power plant that would supply energy to the entire building. The apartments are separated and each has its own meter (thus and OMM - Accounting Measurement Place). All common appliances are also connected to the apartment on the ground floor - equipment in garages, boiler room for central heating, taverns and outdoor garden facilities. The initial idea was to connect the photovoltaic power plant to one of the OMMs according to the current HEP procedure, and the other OMM billing “join” as an energy user. The starting point is the creation of a ‘micro’ energy community within the building – the same principle could be replicated to larger multi-apartment buildings (multi-apartment buildings, but also to buildings owned by the same person, such as holiday homes in another location, etc.).

It should be stressed that, in such cases, it is unnecessary and ineffective to establish formal energy communities as described in the previous chapters – this is a very simple aggregation at facility level – which, of course, in perspective, may or may not participate in a regular energy community. In principle, this “aggregation” could be carried out in HEP’s accounting system, in such a way that the two OMMs form a “micro-community” and the calculated total energy produced from the FNE is divided into both OMMs according to a key (say 60% for ground floor and 40% for the floor in the observed case). Ultimately, this means that both apartments benefit from the energy produced by the FNE, although the FNE is physically connected to only one OMM. This principle is completely replicable for larger facilities or apartments, and even for geographically remote facilities, and does not require any additional infrastructure other than a small modification of HEP's accounting system.

Legal (in the introduction to mention Electricity Market Act) this area is clearly defined through form the ACTIVITIAL BUYER, and defines the obligation System Operator:

Active customer is a final customer, or a group of jointly acting final customers, who consumes or stores electricity generated within its own premises located within defined limits or who sells self-generated electricity or participates in flexibility provision or energy efficiency schemes, provided that those activities do not constitute its primary commercial or professional activity;

Article 3 Paragraph 5

End-customer group jointly referred to in paragraph 1 of Article 25 shall be the metering points of final customers in the same multi-apartment building and/or business premises to which the generating or energy storage facility is connected through the metering point; an individual final customer, a collective consumption metering point or through a dedicated metering point for a generating or energy storage facility.

Article 25 Paragraph 4

The system operator shall enable the group of jointly acting final customers referred to in paragraph 1 of Article 25 and measurement data users; metering data of the metering point of an individual final customer, a collective consumption metering point or a specific metering point for a generating or energy storage installation, necessary to account for electricity taken from the grid or for electricity fed into the grid; depending on the arrangement of use of the production facility i.e. energy storage facilities contracted between final customers acting jointly referred to in paragraph 1 of this Article.

Article 25 Paragraph 9

However, it turns out that the Active Buyer currently impossible to implement in practice because such types of unification and sharing are not supported by HEP's applications, regulations, implementing doluments, etc. (?!). However, it is even more problematic that the existing processes of HEP are completely sequentially arranged, and a good part of the necessary documentation is illogical and, in fact, – unnecessary! Therefore, there are two options, wait for the change of regulations and HEP applications (the deadlines for this operation are completely unclear) or follow the existing procedure.

Proces

According to the applicable HEP procedures, two solutions are possible for the observed case:

  1. Unification of both OMMs into one new OMM, replacement of meters and installation of FNE of required power and
  2. Retain separate OMMs, but install two separate FNEs to be connected to each OMM – two completely independent systems.  

The second variant implies unnecessary technical complexity and costs because for each OMM the same HEP procedure has to be followed (cost of replacing two existing meters, two inverters, more complicated installation in the facility, etc.). Finally, the first variant was chosen, but immediately at the beginning it was noticed that although the entire operation is started due to the installation of the FNE, such a unified "roof" process in HEP does not actually exist, but it all boils down to Sequential series of individual processes which all require practically the same data set Repeated from form to form, where, of course, there are also illogicalities even though the processes themselves are forms correctly explained on HEP's website.

The first illogicality is that the unification of OMMs cannot be done. if the owners are different persons. This is a serious obstacle in the case of multi-apartment buildings where the owners of apartments are different, so the existing procedure for this case is unusable. In the observed case, it is a family, the owner of one OMM is the father and the other the son. Therefore, the first step is the procedure of transferring the OMM to the selected person. The process is sequential, so the next step can be taken only after the end of this activity (by submitting several forms at HEP's counter). The key part is the accompanying documents - the application for the issuance of electricity approval, statements of co-owners that they agree to change the relationship, evidence of ownership of the facility, cadastre extracts, etc., even though it is an OMM for which there are Fifty-Year-Old Historical data in HEP.

There is no specific process for ‘old’ and ‘new’ customers. The application requests the unification of the OMM, and the total required power of the new connection is slightly less than the total sum of the two OMMs, which is regulated by the issued electricity consent. But due to proedura (they say that the problem is applications), energy consent is released on the unified power, which will later create additional problems. A new Supply Contract is also being concluded – but given the strength of the Exceeding 22kW – automatically switches to the red tariff model (which is for the economy and of course means significantly higher prices). HEP employees claim that it is so procedurally complex and that only after unification can the OMM be given new power reduction requirement and back to the white model.

Switching OMMs takes a few days and now both OMMs are on the same person, so surrender can continue a new request to merge the OMM. But surprises don't end there. Only the ‘new’ OMM is active while the old one is ‘archived’, so no readings can be provided. There may be a problem if the process takes time because one meter is ‘inactive’. HEP solves this case by issuing a multiple-increased invoice for the archived meter and by making a final settlement later.

And this part did not go without problems because double invoices were issued for both OMMs of unusually large amounts, so this also required an additional visit to HEP's counter and explanations. An interesting fact is that the consent of the owner of the object certified by a notary is required for unification. Such certification was not required at the first step, although this first step was in fact the change of the contractual relations and their transfer from the existing customer to the new one.

Technical (and financial) complications

The technical process of unification of OMMs is reduced to the dismantling of existing meters and setting up a new (i.e. in the observed case, a more modern existing meter from one of the apartments was used). This is where the first part of the completely unplanned costs comes in. Namely, since the building was built in the mid-1970s, electrical installations were realized according to the technical requirements of the time, in other words, the existing meters are located inside the apartment in the corridors. However, since a new meter is now being installed, it cannot be installed in the apartment according to the regulations, but must be installed on the outside of the building.

This is probably a situation that occurs in most facilities in the Republic of Croatia, and represents a potentially serious cost of several thousand kunas for the typical installation of a new outer cabinet, change of installations and their certification. And now we come to the most absurd part: although this activity is carried out due to the installation of a photovoltaic plant, nthis OMM will not receive an electric meter which will be immediately ‘two-way’ and to be used for the purpose of joining the FNE.

In HEP, this situation is explained by the fact that these are separate business processes and that do not install bidirectional meters (as they are not required in 99% cases), and when set FNE then be in the frame Requests for verification of the possibility of connecting a household with its own production are resolved and the issue of a ‘two-way’ meter. Of course, these operations are not free and the price is several thousand kuna per meter for assembly and dismantling. Undoubtedly, there is a need to simplify the process and eliminate unnecessary steps – in other words create a special process for the installation of FNE This will bring together potential steps and drastically reduce the number of arrivals and the necessary documents.

An additional problem is that each step means filling in several forms, submitting them to the competent HEP service, then waiting at least ten days in each step. In the observed case, almost three months were spent on these steps, all before the installation and connection of the power plant even took place. It should be emphasized that in the whole process, the support of HEP employees was correct and very professional, and that they themselves consider that the process could be significantly improved, but they are limited by rigid ordinances.

Activities for this investment (which is not even close to completion) you can follow at the following link.

Conclusion and recommendations

Developed countries of the European Union where citizens have fought for a simpler and more functional implementation of energy communities enjoy the benefits of energy independence, affordable and more accessible green energy, reduction of energy poverty and the like. The regulations were passed, but they remained vague, so that process of fighting with us is still in its infancy. Therefore, it is of particular importance to open public debates with the Ministry of Economy and Sustainable Development and Hrvatska elektroprivreda in order to overcome obstacles that make it difficult for citizens to organize themselves in energy communities and install photovoltaic power plants on roofs in a constructive and stimulating atmosphere as soon as possible. Today, it is particularly important to communicate with the Ministry of Regional Development and EU Funds regarding the programming of specific financial instruments in order to make the financing of such projects more economically justified and financially sustainable.

To this end, the following recommendations are highlighted:  

  1. The Ministry of Finance should be clearly defined regarding the tax treatment of energy sharing within the energy community;
  2. The Ministry of Economy and Sustainable Development should clearly communicate at what price energy is shared within the community and how the FNE capacity of an individual member is treated in relation to the capacity of the community and the amount of energy consumed;
  3. Competent authorities should be consulted on the cost of using the grid that shares energy;
  4. Ask HEP to change its application (estimating a few days of work for IT engineers who configure the system) and enable the administrative grouping of OMM into communities that would ACCOUNTably share the energy produced by one or more participants: in accordance with the provisions for the Active User. The key to division would be defined when requesting the creation of such a community. This would radically simplify the creation of energy communities in family houses, apartments or multi-apartment buildings and nullify the need to create additional parallel accounting systems. This would completely eliminate the need for the current OMM unification process, which is practically unusable for multi-dwelling facilities with various owners if a common FNE is to be set up;
  5. On the technical side, the need to install a new meter in the cabinet on the exterior of the facade of the building is completely unnecessary and creates serious additional costs for older buildings. All new two-way meters have remote readings, so the argument that the meter must be outside the apartment for this reason is unfounded.

Damir Juričić – writes about economics and finance
Damir Medved – writes to technology and communities

Views: 574

Categories
Expert texts

VAT on solar panels – a missed opportunity?

On 18 August 2022, the Government of the Republic of Croatia announced the possibility of changing the existing VAT rate on photovoltaic panels from 25% at 0%. Quite naturally, citizens and experts dealing with such plants asked whether this measure applies exclusively to photovoltaic panels or the entire plant. The photovoltaic panels themselves represent a smaller part of the purchase value of the entire plant.

We asked ourselves the question: how the effects of the operation (return rate, payback period and electricity unit price) would be affected by three options: (i) the entire installation is subject to VAT at the rate of 25%, (ii) photovoltaic panels are taxed at the rate of 0%, and other components of the plant at the rate of 25% and (iii) all components of the plant are taxed at a VAT rate of 0%.

Simulation

The simulation was prepared on one average rooftop photovoltaic power plant with the following characteristics:

  • 18 photovoltaic panels per 0.38 kW with a total power of 6.84 kW;
  • the turnkey price of the plant is €1 100/kW including VAT;
  • the share of the price of photovoltaic panels in the total plant price is 40%;
  • the share of the inverter price in the total plant price is 10%;
  • the insolation is 1 100 kWh/kWp;
  • average annual energy production 7 148 kWh;
  • the lifetime of the installation is 25 years;
  • reduction of end-of-life production 15%
  • the average number of days of unavailability of a power plant in a year is 2 days;
  • average weighted price of electricity from the grid 0.118 €/kWh;
  • the average annual energy consumption of the household of 10 000 kWh;
  • average annual inflation rate 3%;
  • average annual rate of increase of the price of grid electricity 3%;
  • average annual insurance costs of €17;
  • average other annual costs and risks €15;
  • replacement of inverters in the 15th year;
  • the investment is financed entirely from own resources.

The simulation results are shown in Table 1 and Graphs 1 and 2:

Table 1: Simulation results

Chart 1: Dynamics of the investment payback period and rate of return indicator depending on the investment option

Chart 2: Dynamics of the unit price of electricity from the FNE depending on the investment option

Instead of a conclusion

If only PV panels were exempted from VAT, the payback period would be shortened by 0.83 years or 6.61%, the average annual rate of return (profitability of the investment) would increase 15.96% and the unit price of energy decreased by 7.14%.

If VAT on all components of the plant were to be abolished, the return on investment period would be shortened by 3.12 years i.e. for 24.86%, the profitability of investments increased by 46.24% and the unit price of electricity decreased by 17.86%.

Detailed analysis of the impact of VAT on the construction of photovoltaic power plants We analyzed already at the beginning of the summer


Damir Juričić – writes about economics and finance
Damir Medved – writes about technology and communities

Views: 300

Categories
Expert texts

Effects of VAT refunds

Summary

For the purpose of a more efficient transition to renewable energy sources, decarbonisation, achieving the goals of the European Green Deal, but mostly due to increasing the availability and affordability of energy from photovoltaic power plants to its citizens, the Council of the European Union adopted on 5 April 2022 Directive (EU) 2022/542 supplementing Directives 2006/112/EC and (EU) 2020/285 as regards the possibility to reduce the VAT rate on the purchase price of photovoltaic power plants. Also, an initiative has been launched in our public space to reduction of the purchase price of photovoltaic power plants by the value of VAT paidWithin this text, the impact of such capital assistance on the financial justification of investments in rooftop photovoltaic power plants will be assessed. Also, attention is drawn to the fact that the regulations should enable the right of all citizens who decide to invest in rooftop photovoltaic power plants regardless of the procurement method (procurement of works, PVaaS or PPA). Otherwise, citizens who assess that the procurement of works is not the most acceptable option for them could be discriminated against.

Introduction

In the last few days, an initiative has been launched on the basis of which, every citizen who installs a photovoltaic power plant on their own, the state roof would return a value equal to the VAT contained in the invoice for the installation of the power plant. Therefore, the installation of photovoltaic power plants would be subsidized by 20% capital values of the project. The procedure would be relatively simple – the citizen presents to the Tax Administration an invoice for the power plant and a certificate from the authorised person that the power plant has been properly installed, and the Tax Administration pays the citizen the equivalent of the VAT contained in the invoice. Such capital assistance could have a positive impact on the financial soundness of investments in rooftop photovoltaic power plants. In order to assess the intensity of such aid, it is necessary, first of all, to establish, or to assess, whether the investment in rooftop photovoltaic power plants is financially justified in the absence of aid. In principle, it is justified to grant public aid to projects that are socially justifiable (eligible economic rate of return) and financially unviable (ineligible financial rate of return).

According to financial justification calculations that can meet in the media, investment in rooftop photovoltaic power plants is financially justified and No capital assistance (aid). In these presentations, citizens are encouraged to invest in photovoltaic power plants on their roofs because the investment is “returned” over several years. However, it should be noted that such calculations are based on the assumption that no costs other than capital investment and, possibly, the replacement of the inverter will be incurred in the 25 years of operation of the power plant. How realistic is this assumption can be judged by citizens from their own experience.

Savings

The basic principle of assessing the financial justifiability of an investment in a rooftop photovoltaic power plant results from the achieved savings from which project costs are covered. In this sense, the calculation of financial justification is primarily opportunite. Savings are the difference in energy costs before and after investment. In cases where the investor uses only electricity as the only energy source, the savings will be defined by the difference in annual electricity costs before and after the installation of the photovoltaic power plant. However, in cases where the investor uses other energy products (for example, liquefied gas, fuel oil, pellets, etc.), the savings will be determined by a combination of energy costs before the investment and a combination of energy products with included energy from a photovoltaic power plant. What Are Energy Costs Before

the higher the investment will be, and the savings from which the investment in the PV plant is settled will be greater. Of course, the installation of a photovoltaic power plant of optimal capacity is assumed. The optimal capacity depends on a number of factors, the most important of which are the ratio of consumed and produced energy (higher production relative to consumption poses the risk of changing the status of the investor from the manufacturer for own needs to the manufacturer for the market), the potential use of an electric vehicle, participation in the energy community, changes in the price of energy products and security in energy supply. The optimal photovoltaic power plant generates energy that will be fully consumed for its own needs. If regulations are changed in the future, the possibility of favorable sales of energy in the open market through aggregation, energy trading between members of the energy community, etc., optimality is likely to be determined by other parameters.  

Capital assistance

Capital assistance is a contribution to the proceeds of a project that reduces the capital value of the investment or, in other words, increases the proceeds that contribute to a higher value of the operational result and, therefore, the project is more financially acceptable. In general, subsidizing makes sense those projects that are economically justified, ERR(C) > marginal rates and financially unsustainable; FRR(C) < marginal rates. The financial marginal rate is usually determined by the average weighted price of the funding (WACC). In this regard, capital assistance contributes to the financial sustainability, or eligibility, of the project and, at the same time, its amount should be the result of a calculation based on a certain marginal financial rate of return of the project. In this sense, capital assistance equals the value of VAT in the invoice for the photovoltaic power plant (recalculated VAT rate of 20%), will certainly increase the financial eligibility of the investment project in the rooftop photovoltaic power plant, but it is not entirely clear why it is exactly 20% the capital value of the project and whether that amount is the result of the calculations described.

Most likely it is not, but in any case it can contribute to motivating citizens to invest more easily.

person in black suit jacket holding white tablet computer

Example

The example will show the impact of the costs included in the calculation on FRR(C) and the payback period.

Since there are still, for the most part, no photovoltaic power plants in our country whose exploitation has been completed due to wear and tear or obsolescence, and no data on the proper recording of all details of costs and production are known, simulations of calculations based on known data from the operations of other power plants described in various studies, professional and scientific articles will be presented here. Data on energy consumption and prices are taken from the actual household of citizens who prepare the investment decision using systematic calculations.  Given the doubts about the financial sustainability of photovoltaic power plants presented in the media, the investor organizes simulations with regard to:

  • Cost coverage (investment, replacement of inverters, costs and financing structure, maintenance and replacement costs of spent materials, removal costs, etc.);
  • Availability of the plant over its lifetime;
  • Protection effect against future electricity price increases;
  • Inflation;
  • Risks;
  • Impact of capital assistance on financial eligibility;
  • Inclusion of new household appliances (electric vehicle) and the like.

Project assumptions are described in Table 1:

Table 1: Project assumptions (Source:Author)

Explanation of project assumptions

The investor uses electricity from the grid to meet its energy needs. Considering the total annual consumption of 4 693 kWh, it will install a 4.15 kWp photovoltaic power plant consisting of 10 photovoltaic panels with a peak power of 415 Wp. The lifespan of the plant is 25 years, and its production efficiency will be reduced by 20 years.% in the last year of the planning horizon. It is assumed that the plant will operate continuously over its lifetime, i.e. that its availability will be 100% although there is a certain probability that this assumption will not be viable especially at the time of replacement of the inverter.

It is assumed that the inverter will be replaced in the 12th year, and its price (calculation is prepared on the basis of constant prices) will be 392 €. The investor uses the so-called white tariff model with total unit prices (after 1 April 2022) of HRK 1.15/kWh for a higher daily tariff (VT) and HRK 0.531/kWh for a lower (NT) night tariff, which considering the consumption ratio of VT and NT of 86% and 14% gives a weighted average price of electricity from the grid of 1,063 kn/kWh.

The purchase price of the turnkey power plant is € 4,905 or €1,182/kWp. The investor assumes that the cost of the insurance premium of the power plant will be 15 €/year and that the cost of preventive maintenance will be 5 €/year. As part of the analysis of financial effects, the impact of capital assistance (grant, subsidy) announced to the public will also be assessed. At the end of its life, the investor assumes on the basis of the collected information, it will bear the costs of removing the panel in the amount of 25 €/panel and disposal of 20 €/panel.

The costs are grouped into five groups: 

  1. Capital costs (namely, the capital value of the project),
  2. Maintenance (preventive, inverter replacement, removal, disposal),
  3. Management (insurance premium)
  4. Funding and
  5. Risks.

Financing costs

Financing costs refer to the interest rate of the loan that the investor obtains to settle the capital value of the project at an interest rate of 4% per year for 10 years and compensation 0.75%. Risks were estimated based on the calculation of the difference between the most probable value and the expected value within the applied triangular probability distribution where the reliability of the most probable value (ML) is corrected by uniform distribution – the reliability of the ML value of 100% produces triangular distribution, and reliability of 0% produces a uniform distribution of probabilities.

Simulations (cases) of several cost coverage options have been prepared:

  • S0: It is assumed that the investor will finance the investment entirely from its own sources of financing and that, in addition to the capital value of the project, there will be no other costs in 25 years[8];
  • S1: It is assumed that the investor will bear the capital value of the project and the costs of replacing the inverter;
  • S2: It assumes the costs of capital value of the project, replacement of inverters and financial costs in case of financing from other people's (banks) debt (loan) sources of financing;
  • S3: All costs included and option S2 plus operating costs (preventive maintenance, insurance premium and dismantling and disposal costs);
  • S4: All costs included in S3 plus risks;
  • S0G, S1G, S2G, S3G, S4G: Previous options with a 20 grant included% the capital value of the project including VAT.

Projections of total living costs are shown in Table 2:

Table 2: Coverage of costs with respect to the simulated option

Source: Calculations based on data from Table 1

Project savings

The inclusion of certain types of costs reduces the overall savings from which project costs are met. The logical consequence of the inclusion of new costs with regard to the option is also an increase in the unit price of electricity produced from a photovoltaic power plant. The projected savings and unit energy prices are shown in Table 3:

Table 3: Projection of savings and unit prices of energy from a photovoltaic power plant

Source: Calculations based on data from Table 1

The unit cost of energy from a power plant is calculated as the ratio of total living costs to the energy produced, while the unit savings equal the difference between the unit price from the grid and the photovoltaic power plant. This indicator is also linked to an indicator that is often used in the analysis and evaluation of the impact of photovoltaic power plants: LCOE (Levelized COsts of Electricity) with the difference that when applying LCOE items are discounted. Each option is also shown with the impact of capital assistance and the consequences of reducing the total cost of living due to the refund of VAT contained in the capital value of the project.

black and white solar panels

Financial justification of investment in a photovoltaic power plant

Financial justifiability of investment in a photovoltaic power plant measured by the financial rate of return indicator of the FRR(C) project, which represents the average annual ‘recognition’ rate of roles in the lifetime of the project. That rate shall also represent the maximum eligible average weighted funding rate. The value of the investment (capital value of the photovoltaic power plant) is compared to the annual differences in savings (differences in energy costs before and after the investment) and operating costs (insurance premium, maintenance and replacement of spent materials, panel cleaning, dismantling and end-of-life management, risks, etc.). The eligible financial rate of return of the project shall be assumed to be greater than or equal to the average weighted cost of funding consisting, as a minimum, of own and others’ (e.g. loan) funding sources. FRR(C) represents, at the same time, the return that an investor can expect if he invests in a photovoltaic power plant project if he finances the project from his own sources of financing.

The second, derived indicator of the justifiability of investments is an indicator of the payback period most commonly used by the public, and represents the period (year) in which the cumulative value of the difference between investments and costs is equal to the cumulative value of savings. The third indicator is the financial net present value of the investment FNPV(C). This indicator stems from the same function as FRR(C) with the result showing in another way. In particular, for the calculation of this indicator, a target discount rate is determined and the absolute value of CUs is discarded. If the absolute value of CUs is positive, the benefit of the investment is higher than the discount rate (e.g. WACC) and the investment is eligible because the operating result allows for full settlement of the funding. This CU value represents the difference between the discount rate and FRR(C).

If the operation of the photovoltaic power plant is carried out in accordance with the assumptions described in Table 1, then the investor can expect the returns shown in Table 4:

Table 4: Financial justification indicators

Source: The results of the simulation.

Recovery period

As stated above, the inclusion of costs in the projection reduces the rate of return of FRR(C) and increases the payback period. If the most likely projection for the investor is described in the S4 case, then it can expect a return of 2.65% annually. The decision on the acceptability of this value will depend primarily on the investor's alternatives. For example, an investor can invest an amount equivalent to the capital value of an investment of € 4,905 on a deposit with a commercial bank.

The yield will be relatively small, less than 1%. If these two investments carry the same risks for the investor, then it is more acceptable to invest in a photovoltaic power plant. However, if he is eligible for capital assistance of 20% capital value of the project (VAT refund of 25% in the bill for the power plant) then this yield of 2.65% increase to 8.82% annually, which may constitute adequate compensation for other unquantified risks. A comparison of the project rate of return and the investment payback period with and without capital assistance is shown in Graph 1:

Chart 1: Dependence of FRR(C) and payback periods on capital assistance for different simulation options

Source: Results from Table 4

The impact of the change in the price of electricity

The payback period from 11.63 years to 21.63 years (S0-S4 without grant) will be reduced to 8.79 to 14.34 years with grant. Grant has a similar impact on the rate of return of the project, i.e. the expected return on the bet of € 4,905 over 25 years. Yield of 7.84% to 2.65% (S0-S4 without grant) will increase to 14.20% to 8.82% with a grant. However, irrespective of the justification for investing in a photovoltaic power plant under the conditions described above, the main justification for investing in a rooftop power plant lies in the protection against the increase in the price of electricity from the grid. Of course, if the investor uses other energy sources, then this calculation should include the expected rates of increase in the prices of other energy sources. The ratio of the rate of return to the period of return on investment to the average annual rate of increase in the price of electricity is shown in Figure 2:

Chart 2: Dependence of FRR(C) and RP indicators on the increase in the price of electricity from the grid 

Source: Results of the author's simulation.

The simulation results in Graph 2 are compiled on the basis of the S4 and S4G cases and the assumption of an inflation rate of 4% annually. In case of inflation of 4% and without an increase in the price of electricity from the grid, investment in a photovoltaic power plant would not be financially justified under these criteria. However, with the increase in the price of electricity from the grid, the investment is justified in particular with capital assistance. With an inflation rate of 4% annually without an increase in the price of electricity from the grid, in the case of option S4, the investment would not be financially justified, however, with a capital assistance of 20% the capital value of the FRR(C) project is 5.82% yearly, which would be acceptable. With the expected average annual increase in the price of electricity from the grid, the investment is financially justified with and without capital assistance. It is precisely in the case of S4 with inflation and without an increase in the price of electricity from the grid that the justification for capital assistance to citizens when investing in rooftop photovoltaic power plants is based.

Purchase of photovoltaic power plants and capital assistance

In discussions on capital assistance to citizens in the procurement of rooftop photovoltaic power plants by refunding the VAT paid, it is assumed that the citizen, the owner of the building on whose roof the power plant is installed, is the investor. The supplier supplies the power plant, installs it and delivers the invoice to the citizen for the completed works. The citizen – investor is the recipient of the invoice and with such an invoice proves to the Tax Administration the right to the payment of capital assistance, in kind 20% of the total value of the invoice relating to it. However, there are also alternative models on the market for the procurement of photovoltaic power plants that do not involve a citizen – the owner of a building on whose roof the power plant is installed as an investor and on which no invoice is issued for the works carried out.

PVaaS

These are models in which a third party (investor) installs a photovoltaic power plant on the roof of the building owner (energy user) and supplies it with the service of availability of a photovoltaic power plant (PV).PVaaS - PhotoVoltaic as a Service), and the citizen-user of the availability service pays the investor a monthly fee for the availability service of the power plant usually about 10 years. A similar situation occurs when a citizen concludes a contract for the supply of electricity from an investor who has installed a power plant on the roof of a building owned by a citizen and sells it to the citizen at a predetermined price of electricity (PPA - Power Purchase Agreement) the same over a period of about 10 years or more. In this case too, the citizen – the owner of the roof – is also not the investor and the invoice for the works carried out for the installation of the photovoltaic power plant does not refer to him, but to the investor – a third party.

If regulations are adopted that will enable the right to capital assistance only to citizens - investors, other citizens who assess that alternative models are more acceptable to them, will be unfairly discriminated against, their affordability and availability of affordable energy will be reduced. In the case of the citizen-investor, VAT is included in the invoice for works, and in the case of the citizen-user of the service, in the invoice for the delivered availability fee or in the invoice for the delivered electricity. Therefore, the regulations, which will regulate the payment of the paid

As capital assistance, the circumstances of all the legitimate models available should have been taken into account.  

Conclusion and recommendations 

The entry into force of the new Directive of the Council of the European Union (EU) 2022/542 has created the possibility for the Government of the Republic of Croatia to propose a regulation that will further stimulate citizens to invest in rooftop photovoltaic power plants by reducing or abolishing the VAT rate. The conducted analysis has shown that, despite often unsupported media thesis about unquestionable profitability and financial justification of investments in photovoltaic power plants, there are borderline cases and risks of financial unjustified investments.

Therefore, the adoption of the proposal regarding the VAT refund in the invoices of procured and installed photovoltaic power plants would be a good measure to protect citizens from precisely the described borderline cases. But the question remains whether this measure is fully elaborated. For example, the question should be asked: Will citizens who do not procure works to install solar power plants on their roofs and are not investors, i.e. citizens entering into a PVaaS or PPA contract, also be entitled to capital assistance that will allow them to pay a lower price for the availability fee (PVaaS) or a lower price for the energy produced (PPA)?


Expanded version of the text originally published in the Journal the Center for Public and Non-Profit Sector Development, Tim4Pin No.5 2022

Damir Juričić – writes about economics and finance
Damir Medved – writes to technology and communities

Views: 55

Categories
Expert texts

Energy communities – economy and cost-effectiveness

In mid-October this year it was published. Electricity Market Act (ZTEE) which introduces numerous newspapers of which, for the purposes of this text, we find an interesting part related to energy communities. It is about the possibility of associating citizens into formations that would enable them to jointly produce electricity (here we assume the energy produced by photovoltaic power plant technology) and to share the produced energy in the scope of the same substation. The law provokes divergent views regarding its potential to accelerate individual micro-generation of electricity and the mutual sharing (trading) of generated energy surpluses among members of the energy community. 

Uplatoon

In recent years, since the prices of solar panels have decreased significantly, photovoltaic power plants have become financially self-sustaining projects. The possibility of achieving profitability by investing in photovoltaic power plants justifiably directs the attention of citizens to investment. Also, lately, the term “” has often been encountered.prosumer’, a word composed of ’producer" and "consumer’ and denotes the entity that consumes (consumer) electricity, but it also generates (producer). The role of the entity in the consumption of electricity is known, but questions, especially practical ones, of implementation, arise precisely in relation to the process of electricity production.

Energy communities whose purpose is the production and sharing of produced electricity can be joined by citizens among themselves, but with them or independently and other entities such as local, regional self-government units, institutions, utility companies and other entities gathered around a substation. Here, the most intriguing is that limited possibility of pooling at a location covered by a substation, which significantly limits the meaning of sharing the electricity produced. It is emphasized that members of the energy community produced energy You can share, but not sell..     

Bringing citizens together to share energy

Article 26. ZTEE stipulates that citizens can come together to jointly produce and share the energy produced for their own consumption. This will be done through so-called energy communities. Citizen Energy Community is a legal person established in the territory of the Republic of Croatia, whose shareholders or members voluntarily come together to benefit from the exchange of energy produced and consumed in a specific spatial area of a local community. It is particularly important to point out that a shareholder or member of a citizen energy community may be a natural or legal person, including local self-government units, a micro-enterprise or a small enterprise whose place of residence, establishment or business premises are in the territory of the local self-government unit where the citizen energy community is based. Thus, the regulation allows citizens to join forces with persons governed by public law such as cities, municipalities, institutions or utility companies in order to better exploit the potential of producing and (in-house) consuming (in-kind, sharing) the electricity produced.

Energy community activities

The citizen energy community may participate in the production of electricity for the needs of shareholders or members of the citizen energy community, as follows:

  • From renewable energy sources;
    • Electricity supply to shareholders or members of the citizen energy community;
    • Managing the consumption of electricity by shareholders or members of the citizen energy community;
    • Aggregation of shareholders or members of the citizen energy community;
    • Energy storage for shareholders or members of the citizen energy community;
    • Energy efficiency services for shareholders or members of the citizen energy community;
    • Charging services for electric vehicles of shareholders or members of the citizen energy community;
    • It may provide other energy services to shareholders or members of the citizen energy community in accordance with the rules governing individual electricity markets.

However, the provision of Article 3 of the Article 21 of the ZTEE defines the meaning of the Energy Community as a ‘legal person based on voluntary and open participation and effectively controlled by members or shareholders who are natural persons, local self-government units or small enterprises, whose primary purpose is to provide environmental protection. economic or social benefits to its members or shareholders or to the local areas in which it operates, and No financial gain and may participate in generation, including from renewable sources, supply, consumption, aggregation, energy storage, energy efficiency services or recharging services for electric vehicles, or provide other energy services to its members or shareholders.

The problem of non-profit

Also, the provision of Article 26 stipulates that the Energy Community shall act on the basis of the law governing Financial operations and accounting of non-profit organisations. It should also be added here that neither the Directive nor the ZTEE clearly define the concept of ‘sharing’ energy within a community. Energy sharing can be with or without compensation. Reimbursement can be financially or naturally nominated. In this respect, it is not clear whether any contribution to shared energy is allowed or prohibited. Of course, the ban on compensating those who share their excess energy should be inadmissible because, so to speak, it discriminates against the right of a member of the community to make a profit if all members of the community agree on the price of shared excess energy.

Finally, a member of the community in need of energy can take it from the grid and will pay a fee for the energy taken (energy price – HRK/kWh). He considers that price to be economically justified. The question is why he could not buy energy from his community member who at that moment has excess energy at a lower price than that of the grid (if such circumstances arise). Why should members of the community (those who surrender their excess energy to those who are currently claiming energy) not be provided with economic and financial benefits – one additional income and the other with savings? All the more so since these revenues and expenditures for purchased (shared) energy are not recorded in the account of the legal entity of the energy community, but in the private accounts of the members of the community. These are certainly questions that should be clearly answered before the implementation of the set goals of the energy transition and the operational association of citizens in energy communities begins.

EU regulation

These provisions could, through their vague wording, make it more difficult for the immediate organisation, organisation and final implementation of the intended purpose and objectives. It would be inferred from those provisions that an economic advantage does not involve the making of a financial profit. Also, there is a limitation or assurance of the legislator that energy communities must not be legally organized in any other way than in a way that implies recording business changes in accordance with the rules of non-profit organizations, that is, associations or cooperatives. This could be controversial because Directive of the European Union in paragraph 44 of the preamble stresses that “Member States should be able to ensure that citizen energy communities are subject to any form, for example an association, a cooperative, a partnership, a non-profit organisation or a small or medium-sized enterprise;, “as long as such an entity may, acting in its own name, exercise rights and be subject to obligations”.

Therefore, the question remains as to why the legislator limited Croatian citizens exclusively to non-profit organisations of all the above mentioned possibilities of founding forms. Such formulations of the ZTEE could, in immediate practice, give rise to a number of contentious situations.

Purchase and exploitation of photovoltaic plants

In order to achieve the purpose of its establishment, the Energy Community will focus its attention on two groups of processes. The first refers to the preparation, procurement, design, installation, financing and maintenance of the photovoltaic plant, while the second group of processes refers to the sharing of the generated energy among the members of the community. However, before the practical implementation of the project, several questions need to be answered.

  1. Will the legal owner of the photovoltaic power plant be the energy community as a legal person or will the legal owners be the members of the community installing the power plants on their roofs?
  2. Who will be the economic owner in these cases?
  3. Will the surpluses of energy produced be shared between the members of the community who are its co-owners, or will the co-owners of the community be able to share their surpluses with other neighbours within one substation who are not formal owners of the legal entity of the energy community?
  4. Will the sharing be operationally carried out with financial compensation (will it be possible to trade with each other the surpluses produced) or will the surpluses produced be given to community members? Or, on the other hand, will some calculation price of the surpluses produced be formed in advance, which will be divided among the members according to certain keys?
  5. Finally, how will energy surpluses be shared among its members in cases where the supply of surpluses is lower than the energy demand among members?
  6. In this case, who will have priority in taking over the energy surplus – proportional split or split according to the criterion of the maximum price offered?

The general organisation of the relationships between entities within and outside the energy community within a substation can be illustrated by schema 1:

Scheme 1: General organisational chart of relations within the energy community (Source: Authors)

Legend: G – a citizen who is a member of an energy community or a citizen who is not a member of an energy community but who falls within the territory of the same substation.

Purchase of photovoltaic installations

Rational members of the energy community in the preparation phase, and upon the formal establishment of the energy community, which could be either an association or a cooperative within the ZTEE, will ask the question of how to procure the plant. Whether the power plant will be purchased as works, as a service of availability, or whether it will give the surfaces in its legal ownership to a third party and conclude an energy purchase contract with it (so-called energy purchase contract). the PPA Agreement). The procurement of works is preceded by the procurement of design and financing. The following is the procurement of contractors (installation of a photovoltaic power plant) and maintenance of the power plant in its lifetime. It should be noted here that the risks of design and maintenance, and partly assembly, are taken over by the energy community. Members of the community will, in this regard, assess their knowledge and skills in the implementation of these processes, i.e. their capacity to take on the aforementioned risk groups. In this case, the energy community will be the permanent legal and economic owner of the plant. All energy produced belongs to the energy community.

Under the second option, the procurement of the availability of a photovoltaic power plant, the energy community will prepare a preliminary design with precisely defined output characteristics of the plant and procure a project executor who, based on the preliminary design and defined standards, will design, finance, install and maintain the plant in its lifetime. During the period of the contract for the procurement of the power plant, the community will pay a fee for the availability to the contractor as long as the power plant is operational in accordance with the defined standards and output characteristics of the project. In this case, the energy community will be the permanent legal owner of the facility, but the economic owner will be the contractor. Upon termination of the contract, the energy community will also become the economic owner. All energy produced belongs to the energy community.

In the third case, the members of the community will acquire a contractor who will design, install, finance and maintain the plant and conclude a contract with the energy community, or its members, on the purchase of electricity based, if available, on a predetermined quantity and price. Here, all energy produced may belong to the Energy Community or its members, depending on the content of the contract.

In these processes related to the procurement of a photovoltaic plant, the citizen is recognized as a co-owner of the energy community, who with his financial contribution participates in the full or partial financing of the procurement of the power plant. The question here is who will be the legal owner of the power plant – the energy community or a citizen member of the community? Both options are possible.

Exploitation of photovoltaic power plant

Once the PV plant is installed and put into service, community members are expected to use the energy produced. Energy will most likely be used in the following ways:

  • For self-consumption (each member of the community will first use the energy produced on, for example, the roof of their building for their own energy needs in order to replace more expensive energy from the grid with cheaper energy from their own plant and thus achieve savings);
  • They will share the excess energy produced with members of the community;
  • To compensate for the energy shortage by taking over the surpluses generated by the photovoltaic power plants of other members of the community who currently have surpluses at their disposal;
  • Compensate the energy shortage with energy from the grid;
  • Excess power handed over to the grid.

In order for energy to be shared and distributed transparently and securely billed and recorded, an intelligent system will be needed to enable automatic monitoring and recording of energy surpluses and deficits produced and shared among members of the community, automatic comparison of prices produced by members' individual PV systems with the price of energy procured from the grid, and in particular recording and accounting of shared internally traded surpluses. In relation to the above, since the Directive and the ZTEE are not clearly defined, it will be of particular importance for the more efficient implementation of energy communities to clearly define what energy sharing means – whether this redistribution at a predetermined fixed fixed price or sharing also implies trading internal prices between members of the community (possibly citizens who are not members of the community because they are not able to participate materially and financially in the procurement of a photovoltaic power plant, but they contribute to the achievement of common interests with formal members of the community).

Managing the part related to the exploitation of a photovoltaic power plant within the energy community is also a good idea to consider the possibility of bringing together different members whose rhythm of production and consumption of the energy produced is in a kind of discrepancy – when one member produces energy and does not consume it, the other member consumes energy, and the opposite. For example, it is efficient to associate citizens and schools because the school in the morning hours of the day consumes the energy that citizens produce, but do not consume because, most often, they are in workplaces dislocated from their place of residence (energy production). On the other hand, the school in the afternoon does not consume energy while the citizens spend it. Also, school in the summer months is the predominant energy producer, and citizens are the predominant consumer. Such ‘symbiosis’ can make a significant contribution to better achieving the transition targets.

Financing the procurement of energy communities

A particularly important issue, arising from the questions raised above, relates to the financing of the procurement of photovoltaic power plants within the energy community. For the implementation of the processes related to financing, it is important to answer the question of who is the legal and economic owner of photovoltaic power plants, especially if the members of the energy community are local and regional self-government units and institutions or companies in their ownership. If the energy community will be an investor in photovoltaic power plants, then it will obtain sources of financing and refund them from the availability fee or the price of energy sold to other members of the community. It is clear here how important it is to define precisely the dual role of a member of the community – as a co-owner of the community (procurement processes of a photovoltaic power plant) and as an energy consumer (processes of exploitation of a photovoltaic power plant).

Power Plant Procurement Variants

The purchase of the power plant will most likely be financed from its own sources (contribution of community members, the so-called equity, a founding bet) and from debt obtained from, most often, commercial banks. Of course, the relationship between one's own and another's debt sources will depend on the overall risks of the project. Scheme 2 presents two possibilities of community financing:

Scheme 2: Financing options for the Energy Community (Source: Authors)

As far as possible a) on scheme 6, the energy community, as a legal entity established by the role of its members, invests in photovoltaic power plants on the property of its members. The legal entity of the energy community, in addition to the founding roles of its members, also obtains debt sources of financing in order to settle the capital value of the investment. The legal basis for an investment may be, for example, a lease agreement for members' assets.

The legal person of the energy community will compensate the acquired right to invest on other people's property by means of a fee (rent) to the owners of the property (members - but this immediately raises the question whether the legal person of the energy community could conclude contracts on the lease of property and other citizens who are not members of the energy community). From the price of energy sold to its members, the legal entity of the energy community will settle debt sources of financing and reduce its income and expenditure account to zero (0) since it keeps business books according to the rules for non-profit organizations. As far as possible b) members of the energy community obtain financing sources themselves (own and others – debt) in order to invest in a photovoltaic power plant on their assets. Also, for the purpose of sharing energy surpluses, it will conclude an agreement with the legal entity of the energy community in which it will precisely define the rules of energy sharing.

In order to encourage citizens to invest in photovoltaic power plants within energy communities, it is also worth raising the issue of easier use of financial instruments in order to make commercial sources more accessible and minimize their own sources. The financial instruments of the Multiannual Financial Framework 2021-2027 could be used significantly here. Namely, Regulation (EU) 2021/1060 programming, design and implementation of financial instruments has been significantly facilitated. A wide range of possible financial instruments suggests that, precisely for the purpose of financing energy communities, instruments could be created that would contribute to accelerating the implementation of such projects. According to the authors, this could be a non-repayable aid instrument (to cover part of the costs of project preparation) combined with a subordinated loan. Such an instrument could facilitate and speed up the preparation of a project for citizens and enable the reduction of own funding sources with a higher probability of obtaining commercial debt financing sources.

Zplugin

The entry into force of the ZTEE is a major step forward in the implementation of the goals of the energy transition, especially in the part related to the goal of energy production at the place of consumption, while the choice of energy production technology will meet the goal related to decarbonisation. However, the current articulation of regulations is insufficiently clear for the immediate implementation of the set goals and poses significant risks in terms of achieving the set goals. In this regard, it is of particular importance to stimulate and conduct expert discussions in the shortest period of time in order to clearly define all the processes necessary for the low-risk implementation of projects. A specially programmed EU combined financial instrument structured with capital assistance to cover part of the costs of project preparation and a subordinated loan with a reduced interest rate and an extended repayment period in relation to the current market conditions could also contribute to accelerating the implementation of projects of this type.

This is the second part of the extended version of the text originally published in the Journal the Center for Public and Non-Profit Sector Development, Tim4Pin No.1 2022

The first part is available at:


Damir Juričić – writes about economics and finance
Damir Medved – writes about technology and communities

Views: 90