Dana 18. kolovoza 2022. godine Vlada Republike Hrvatske najavila mogućnost promjene postojeće stope PDV-a na fotonaponske panele sa 25% na 0%. Sasvim prirodno, građani i stručnjaci koji se bave ovakvim postrojenjima postavili su pitanje odnosi li se ova mjera isključivo na fotonaponske panele ili na cijelo postrojenje. Naime, sami fotonaponski paneli predstavljaju manji dio nabavne vrijednosti cijelog postrojenja.
Postavili smo si pitanje: kakav bi utjecaj na učinke poslovanja (stopu povrata, razdoblje povrata i jediničnu cijenu električne energije) imale tri opcije: (i) cijelo postrojenje se oporezuje PDV-om po stopi 25%, (ii) fotonaponski paneli se oporezuju po stopi od 0%, a ostale komponente postrojenja po stopi od 25% te (iii) sve komponente postrojenja oporezuju se po stopi PDV-a od 0%.
Simulacija
Simulacija je priređena na jednoj prosječnoj krovnoj fotonaponskoj elektrani sa slijedećim obilježjima:
18 fotonaponskih panela po 0.38 kW ukupne snage 6.84 kW;
cijena postrojenja po principu ”ključ u ruke” iznosi 1 100 €/kW s PDV-om;
udio cijene fotonaponskih panela u ukupnoj cijeni postrojenja iznosi 40%;
udio cijene invertera u ukupnoj cijeni postrojenja iznosi 10%;
insolacija iznosi 1 100 kWh/kWp;
prosječna godišnja proizvodnja energije 7 148 kWh;
životni vijek postrojenja 25 godina;
smanjenje proizvodnje na kraju životnog vijeka 15%
prosječan broj dana neraspoloživosti elektrane u jednoj godini iznosi 2 dana;
prosječna ponderirana cijena električne energije iz mreže 0.118 €/kWh;
prosječna godišnja potrošnja energije u domaćinstvu 10 000 kWh;
prosječna godišnja stopa inflacije 3%;
prosječna godišnja stopa povećanja cijene električne energije iz mreže 3%;
prosječni godišnji troškovi osiguranja 17 €;
prosječni ostali godišnji troškovi i rizici 15 €;
zamjena invertera u 15. godini;
ulaganje se u cijelosti financira iz vlastitih izvora.
Rezultati simulacije prikazani su u tablici 1 te grafikonima 1 i 2:
Tablica 1: Rezultati simulacije
Grafikon 1: Dinamika pokazatelja razdoblja povrata ulaganja i stope povrata u ovisnosti o investicijskoj opciji
Grafikon 2: Dinamika jedinične cijene električne energije iz FNE u ovisnosti o investicijskoj opciji
Umjesto zaključka
Kada bi se samo fotonaponski paneli oslobodili PDV-a razdoblje povrata ulaganja skratilo bi se za 0.83 godine ili 6.61%, prosječna godišnja stopa povrata (profitabilnost ulaganja) povećala bi se 15.96% te jedinična cijena energije smanjila za 7.14%.
Ukoliko bi se na sve komponente postrojenja ukinuo PDV razdoblje povrata ulaganja skratilo bi se za 3.12 godine odnosno za 24.86%, profitabilnost ulaganja povećala za 46.24% te jedinična cijena električne energije smanjila za 17.86%.
Ideja investicije u obiteljsku FN elektranu na Drenovi je naravno postići što veći stupanj energetske autonomije. Objekt se grije na pelete i vlasnici posjeduju dva električna automobila – Renault Twingo ZE i Renault Captur 1.6 E-Tech Plug-in Hybrid 160 Intens. Stoga je planirana FN elektrana snage 8,5 kW nešto većeg kapaciteta, a poseban naglasak je bio na mogućnost buduće nadogradnje sa baterijom od oko 10 kWh koja bi osigurala autonomiju dan-dva, pa je odabran hibridni invertor odgovarajuće snage. Investicija u bateriju planira se tijekom naredne godine.
Planirano postrojenje – shematski prikaz
Prema iskustvu ostalih investitora, očekivali smo dugotrajni proces rješavanja papirologije – tako se i dogodilo. Uzrok dijela problema bio je zahtjev da elektrana napaja dva OMM (obiteljska kuća ima dva stana sa odvojenim brojilima). HEP trenutno nema rješenja za taj slučaj, osim da se izvrši objedinjavanje brojila (iako po Zakonu postiji kategorija Aktivni potrošač, ali to nije implementirano u njihovim sustavima). I tu nastaje problem sekvencijalnog pristupa, čekanja u svakom koraku itd.
Hodogram aktivnosti
Na obiteljsku kuću sa dvije etaže (prizemlje i kat) planira se postaviti fotonaponska elektrana koja bi energijom opskrbljivala cijeli objekt. Stanovi su odvojeni i svaki ima vlastito brojilo (time i OMM – Obračunsko Mjerno Mjesto). Na stan u prizemlju priključeni su i sva zajednička trošila – oprema u garažama, kotlovnica za centralno grijanje, konobe i vanjski vrtni objekti. Početna ideja bila je fotonaponsku elektranu priključiti na jedno od OMM-a prema važećoj proceduri HEP, a drugo OMM obračunski ”pridružiti” kao korisnika energije.
Aktivni kupac je krajnji kupac, ili skupina krajnjih kupaca koji djeluju zajedno, koji troši ili skladišti električnu energiju proizvedenu u vlastitom prostoru smještenom unutar definiranih granica ili koji prodaje električnu energiju koju sam proizvodi ili sudjeluje u pružanju fleksibilnosti ili u programima energetske učinkovitosti, uz uvjet da te djelatnosti nisu njegova primarna trgovačka ili profesionalna djelatnost
Članak 3. Stavak 5.
Skupinu krajnjih kupaca koji zajednički nastupaju iz stavka 1. članka 25. čine obračunska mjerna mjesta krajnjih kupaca u istoj zgradi s više stanova i/ili poslovnih prostora na čiju instalaciju je priključeno proizvodno postrojenje ili postrojenje za skladištenje energije preko obračunskog mjernog mjesta pojedinog krajnjeg kupca, obračunskog mjernog mjesta zajedničke potrošnje ili preko posebnog obračunskog mjernog mjesta za proizvodno postrojenje ili postrojenje za skladištenje energije.
Članak 25. Stavak 4.
Operator sustava dužan je omogućiti skupini krajnjih kupaca koji zajednički nastupaju iz stavka 1. članka 25. te korisnicima mjernih podataka mjerne podatke obračunskog mjernog mjesta pojedinog krajnjeg kupca, obračunskog mjernog mjesta zajedničke potrošnje ili posebnog obračunskog mjernog mjesta za proizvodno postrojenje ili postrojenje za skladištenje energije, potrebne za obračun električne energije koja je preuzeta iz mreže odnosno obračun električne energije koja je predana u mrežu u ovisnosti o aranžmanu korištenja proizvodnog postrojenja odnosno postrojenja za skladištenje energije koji su međusobno ugovorili krajnji kupci koji zajednički nastupaju iz stavka 1. ovoga članka.
Članak 25. Stavak 9.
Međutim, ispostavilo se da je Aktivnog kupca trenutno nemoguće provesti u praksi jer takve vrste objedinjavanja i dijeljenja nisu podržane HEP-ovim aplikacijama, pravilnicima, provedbenim dolumentima, itd. (?!). No još je problematičnije što su postojeći procesi HEP-a posve sekvencijalno posloženi, a dobar dio potrebne dokumentacije je nelogičan i, zapravo – nepotreban! Prema tome postoje dvije opcije, čekati promjenu regulativa i HEP aplikacija (rokovi za tu operaciju su posve nejasni) ili slijediti postojeću proceduru.
Proces
Prema važećim procedurama HEP-a moguća su dva rješenja za promatrani slučaj:
Objedinjavanje oba OMM u jedno novo OMM, zamjena brojila i montaža FNE tražene snage te
Zadržavanje odvojenih OMM, ali postavljanje dvaju odvojenih FNE koje bi se priključile na svako OMM – dva posve neovisna sustava.
Druga varijanta implicira nepotrebno tehničko kompliciranje i troškove jer se za svako OMM mora proći ista procedura HEP-a (trošak zamjene dvaju postojećih brojila, dva invertera, kompliciranije instalacije u objektu i slično). Odabrana je, konačno, prva varijanta no, odmah na početku uočeno je da, iako se cijela operacija pokreće zbog instalacije FNE, takav objedinjeni ”krovni” proces u HEP-u, zapravo, ne postoji, nego se sve svodi na sekvencijalnu seriju pojedinačnih procesa koji svi zahtijevaju praktično isti set podataka koji se ponavljaju iz obrasca u obrazac, pri čemu, naravno, ima i nelogičnosti iako su sami procesi i obrasci korektno objašnjeni na mrežnim stranicama HEP-a.
OMM problematika
Prva nelogičnost je da se objedinjavanje OMM-a ne može napraviti, ako su vlasnici različite osobe. Ovo je ozbiljna prepreka u slučaju višestambenih objekata gdje su vlasnici stanova različiti, pa je postojeća procedura za taj slučaj neupotrebljiva. U promatranom slučaju radi se o obitelji, vlasnik jednog OMM-a je otac, a drugoga sin. Stoga je prvi korak procedura prebacivanja OMM na odabranu osobu. Proces je sekvencijalan, pa se u sljedeći korak može krenuti tek nakon završetka te aktivnosti (predajom nekoliko obrasca na šalteru HEP-a). Ključni dio su prateći dokumenti – zahtjev za izdavanje elektroenergetske suglasnosti, izjave suvlasnika da pristaju na promjenu odnosa, dokazi o vlasništvu objekta, izvaci iz katastra i slično iako se radi o OMM-u za koje postoje pedesetogodišnji povijesni podatci u HEP-u.
Nema posebnog procesa za ”stare” i ”nove” kupce. U zahtjevu se traži objedinjavanje OMM-a, a ukupna tražena snaga novog priključka je nešto manja od ukupnog zbroja dvaju OMM-a, što je regulirano izdanom elektroenergetskom suglasnosti. No zbog proedure (kažu da je problem aplikacija), energetska suglasnost se izdanje na objedinjenu snagu, što će kasnije stvroiti dodatne probleme. Sklapa se i novi Ugovor o opskrbi – no s obzirom da je snaga veća od 22kW – automatski se prelazi na crveni tarifni model (koji je za privredu i naravno znači bitno veće cijene). Djelatnici HEP-a tvrde da je tako procesno složeno i da se tek nakon objedinjavanja OMM može dati novi zahtjev za smanjenje snage i povratak na bijeli model.
Za prebacivanje OMM-a potrebno je nekoliko dana i sada se oba OMM-a nalaze na istoj osobi, pa se može nastaviti sa predajom novog zahtjeva za objedinjavanje OMM-a. No, iznenađenjima tu nije kraj. Aktivan je samo ”novi” OMM dok je stari ”arhiviran” pa se ne mogu dostavljati očitanja. Tu može nastati problem ako proces potraje jer je jedno brojilo ”neaktivno”. HEP taj slučaj rješava na način da se za arhivirano brojilo izda višestruko uvećan račun te da će se konačno poravnanje obaviti naknadno.
I taj dio nije prošao bez problema jer su izdani dupli računi za oba OMM neuobičajeno velikih iznosa, pa je i to zahtijevalo dodatni odlazak na šalter HEP-a i objašnjavanja. Zanimljiv je podatak da se za objedinjavanje traži pristanak vlasnika objekta ovjeren kod bilježnika. Takvo ovjeravanje nije bilo potrebno kod prvog koraka iako je taj prvi korak zapravo promjena ugovornih odnosa i njihovo prebacivanje sa postojećeg kupca na novog.
Tehničke (i financijske) komplikacije
Tehnički proces objedinjavanja OMM-a svodi se na demontažu postojećih brojila i postavljanje novog (odnosno u promatranom slučaju iskorišteno je modernije postojeće brojilo iz jednog od stanova). Tu nastaje i prvi dio posve neplaniranih troškova. Naime kako je objekt izgrađen sredinom sedamdesetih, električne instalacije su realizirane prema tadašnjim tehničkim zahtjevima, drugim riječima, postojeća brojila se nalaze unutar stana u hodnicima. No, s obzirom da se sad ugrađuje novo brojilo, ono se prema propisima ne može ugraditi u stan, već mora biti ugrađeno na vanjskom dijelu objekta. Ovo je vjerojatno situacija koja se pojavljuje u većini objekata u RH, i predstavlja potencijalno ozbiljan trošak od nekoliko tisuća kuna za tipičnu ugradnju novog vanjskog ormarića, promjenu instalacija i njihovo atestiranje.
I sad se dolazimo do najapsurdnijeg dijela: iako se ova aktivnost provodi zbog ugradnje fotonaponskog postrojenja, novo OMM neće dobiti električno brojilo koje će odmah biti ”dvosmjerno” i koristiti se za potrebu priključenja FNE. U HEP-u tu situaciju objašnjavaju da su to odvojeni poslovni procesi i da se u okviru procesa objedinjavanja OMM ne ugrađuju dvosmjerna brojila (jer ne trebaju u 99% slučajeva), a kada se postavi FNE onda se u okviru Zahtjeva za provjeru mogućnosti priključenja kućanstva s vlastitom proizvodnjom rješava i problematika ”dvosmjernog” brojila. Naravno ove operacije nisu besplatne i cijena je više tisuća kuna po brojilu za montažu i demontažu.
Umjesto zaključka
Nedvojbeno je potrebno pojednostaviti proces i izbaciti nepotrebne korake – drugim riječima stvoriti poseban proces za ugradnju FNE koji će objediniti potencijalne korake i drastično smanjiti broj dolazaka i potrebnih dokumenata. Dodatni je problem što svaki korak znači popunjavanje nekoliko obrazaca, njihovu predaju u nadležnu službu HEP-a, potom čekanje najmanje desetak dana u svakom koraku.
U promatranom slučaju na navedene korake potrošeno je gotovo tri mjeseca, a sve prije nego se uopće došlo do montaže i priključenja elektrane. Treba naglasiti da je u cijelom procesu podrška djelatnika HEP-a bila korektna i vrlo profesionalna, te da i oni sami smatraju kako bi se proces mogao značajno unaprijediti, no, kažu ograničeni su rigidnim pravilnicima.
Tijek projekta
11.4.2022.
Izrađen idejni projekt
FN 8,5 kW – Drenova, 3t Cable prema zahtjevima investitora. Obiteljska kuća sa dvije etaže svaka ima svoj OMM, različiti vlasnici. Snaga svakog priključka je 13,8 kW, objedinjeni priključak od 22 kW.
12.4.2022.
Zahtjev za prebacivanje oba OMM na jednu osobu
Prema važećoj proceduri objedinjavanje priključaka se može realizirati samo ako je isti vlasnik oba OMM.
20.4.2022.
Zahtjev za objedinjavanje priključaka
Nakon prebacivanja oba OMM na istu osobu sljedeći korak je zahtjev za njihovo objedinjavanje.
1.5.2022.
Zahtjev za sklapanjem novog ugovora o opskrbi
Novi ugovor reguliraja novo stanje – jedna vlasnik oba OMM
8.5.2022.
Potpisivanje novog u govora o opskrbi
Stigao je novi ugovor, pa se promptno potpisuje da bi se proces mogao nastaviti.
9.5.2022.
Zahtjev za EE suglasnost – objedinjavanje brojila
Sljedeći korak je traženje nove EE suglasnosti jer sad imamo na jednom OMM dvostruku snagu.
18.5.2022.
Elektroenergetska suglasnost – izdana
Izdana je suglasnost EE suglasnost na 27,60 kW što je stvorilo dodatne probleme u nastavku iako je jasno rečeno da će tražena snaga biti 22 kW (to je maksimum za rezidencijalne potrošače).
9.6.2022.
Ponuda za izgradnju FN
3t Cable dostavlja konačnu ponudu za izgradnju FN, proble je bio u nedostatku opreme na tržištu pa se čekalo na dobavljača.
10.6.2022.
Zahtjev za radove na EE mreži – novi ormarić
Investitor radova je u skladu sa procedurom HEP-a predao zahtjev za radove na postojećoj instalaciji
13.6.2022.
Montaža novog priključnog ormarića
Investitor radova je u skladu sa zahtjevom HEP-a ugradio novi priključni ormarić na fasadu zgrade, srećom je postajao podzemni priključak pa se operacija mogla izvesti bez pretjeranih građevinskih radova, kopanja i razbijanja fasade
13.6.2022.
Predan zahtjev za novi Ugovor o korištenju mreže
Nakon fizičkog objedinjavanja OMM, predaje se zahtjev za novi ugovor – problem je što u njemu mora biti nova priključna snaga od 27,6 kW
4.7.2022.
Potpisan ugovor za CRVENI tarifni model
Potpisuje se novi ugovor na 27,6 kW – crveni tarifni model, takva je procedura, tek naknadno se može tražiti smanjenje na 22 kW
14.7.2022.
Objedinjavanje brojila, montaža u novi ormar
Ekipa iz HEP-a izvršava demontaže i preseljenja brojila, novije brojilo se seli u novi priključni ormarić
21.7.2022.
Predan zahtjev za promjenu modela u bijeli
Tek nakon fizičkog objedinjavanja predaje se zahtjev za promjenu snage u 22 kW i povratak u bijeli tarifni model
22.7.2022.
Zahtjev za provjeru mogućnosti za priključenje FN PM 1.7
Tek sad je moguće podnjeti zahtjev za provjeru mogućnosti za priključenje FN – tri mjeseca nakon početka procesa!
29.7.2022.
Montaža i testiranje FN 8,5 kW Drenova
3t Cable je u tri radna dana izvršio kompletnu montažu i testiranje elektrane. Najviše izazova je bilo sa visokim temperaturama (do 40 stupnjeva).
2.11.2022.
Obavijest o mogućnosti priključenja
HEP
13.12.2023.
Zahtjev za sklapanje ugovora o opskrbi krajnjeg kupca kojim je reguliran i otkup električne energije
HEP
15.2.2023.
Sklapanje ugovora o korištenju mreže i promjenu statusa korisnika mreže
HEP
6.3.2023.
Opremanje OMM – dvosmjerno brojilo
HEP
13.7.2023
Izdavanje potvrde za trajni pogon
HEP
Ukupno trajanje projekta od prvog zahtjeva prema HEP-u do izdavanja konačne potvrde za trajni pogon – 458 dana!
Bez komentara…
Fotodokumentacija
U nastavku je galerija fotografija koje dobro dokumentiraju cijeli proces montaže – od ideje do pogleda iz ptičje perspektive…
U opuštenoj atmosferi završili smo naš ovogodišnji program ljeto na Drenovi 2022. Tema ovog Solarnog roštilja bile su energetske zajednice i zašto ih trebamo – a trebamo ih da bi postigli energetsku i financijsku neovisnost u današnjem vremenu opće krize.
Podcast
Energetske zajednice su nam rasvijetlili Damir Juričić i Damir Medved – pa o čemu su pričali poslušajte na našem podcastu (ovaj put kamera nije bila aktivna :))
Damir Juričić detaljno je predstavio koja je pravna osnova za osnivanje energetske zajednice, prednosti i mane pojedinih organizacijskih varijanti, tajne financiranja EZ, te koji nas još koraci očekuju kod osnivanja naše Drenovske energetske zajednice ili uadruge. Damir Medved predstavio je primjer jedne zanimljive otočne zajednice – danskog otoka Bornholma, koje je jedan od najboljih primjera održivih zajednica u EU. Oni su partner na projektu Insulae koji se provodi na našem otoku Unije, i mogu nam biti inspiracija kako bi trebalo graditi ekonomski i energetski neovisne zajednice. Posebno su zanimljivi njihovi modeli upravljanja i vlasništva energetske infrastrukture.
Prezentacije
Koga zanimaju detalji – može pogledati i prezentacije:
Kada ste pročitali naslov događanja Solarni roštilj sigurno ste se zapitali što je to i kako radi. Oni koju su došli (pa i oni koji će pogledati slike sa događanja) vjerojatno su pomislili da će roštilj biti povezan na solarne panele ili nešto slično, ali kada su posjetitelji čuli predavanje, shvatili su da solarno nije baš tako jednostavno.
Problem, tj. komplikacija nije uopće tehničke prirode, već naravno administrativne.
Predavanje
Damir Medved iz udruge Bez granica napravio je jednostavan i konkretan uvod što su to fotonaponske elektrane, obnovljivi izvori energije i kakav je postotak uporabe tih resursa kod nas u Hrvatskoj te u ostatku Europe.
Tehničku stranu fotonaponskih elektrana i solarnih panela ispričao je Saša Ukić iz 3t Cable, naše domaće tvrtke iz Ičića. Kao primjer poslužili su radovi u tijeku upravo na obiteljskoj kući Damira Medveda.
Da bi jedan takav projekt bio i financijski stabilan potrebno je napraviti dobar izračun. Sve što u takav izračun treba upisati kao trošak pojasnio je Damir Jurčić iz Sveučilišnog centra za podršku pametnim i održivim gradovima.
Bilo je i puno konrektnih pitanja iz publike na koja su predavači vrlo kompetentno odgovarali. Pravo osvježenje je čuti da je uz dobru firmu i tehničku podršku sve moguće iako postoje i određene prepreke za postavljanje fotonaponske elektrane.
Zaključak je da nije baš jednostavno, treba se opskrbiti znanjem i informacijama te strpljenjem kod uvijek teške i komplicirane administracije. Usprkos svim problemima i još nedorečenim zakonima kod ovakvih alternativnih izvora energije, potražnja je velika.
Mini-jam session
Nakon sat vremena i puno tehničkih, financijskih i statističkih informacija startali su električni roštilji i mini jam session svirka. U bendu (još) bez izmena svirali su: Benedikt Perak gitara, Siniša Babić bas gitara, gost iz Graza Saša Mitrović truba, a kao drugi gost iznenađenja pridružio se i Stipe Bilić na klaviru. Ugodni zvukovi laganog jazz-a ispunili su dvorište Društvenog centra Drenova na vidljivo zadovoljstvo publike. Nakon pauze i osvježenja uz hranu i piće, bend je zasvirao i nekoliko popularnih melodija pa je i publika dobila priliku zapjevati.
S lijeva na desno: Stipe Bilić, Siniša Babić, Saša Mitrović, Benedikt Perak
Snimak predavanja
Svakako pogledajte video tehničke prezentacije Solarnog roštilja na našem you tube kanalu:
Sljedeći Solarni roštilj II je u petak 29. srpnja u 18 sati gdje će se pričati o energetskim zajednicama.
U svrhu efikasnijeg prijelaza na obnovljive izvore energije, dekarbonizacije, postizanja ciljeva europskog zelenog plana, ali ponajviše zbog povećanja dostupnosti i priuštivosti energije iz fotonaponskih elektrana njenim građanima, Vijeće Europske unije je 5. travnja 2022. godine donijelo direktivu (EU) 2022/542 kojom se dopunjuju direktive 2006/112/EZ i (EU) 2020/285 u pogledu mogućnosti smanjenja stope PDV-a na nabavnu cijenu fotonaponskih elektrana. Također, u našem javnom prostoru pokrenuta je inicijativa za smanjenje nabavne cijene fotonaponskih elektrana za vrijednost plaćenog PDV-a.U okviru ovog teksta procijenit će se učinak ovakve kapitalne pomoći na financijsku opravdanost ulaganja u krovne fotonaponske elektrane. Također, skreće se pozornost da bi propisima trebalo omogućiti pravo svim građanima koji se odluče na ulaganje u krovne fotonaponske elektrane neovisno o načinu nabave (nabava radova, PVaaS ili PPA). U protivnom, građani koji procijene da im nabava radova nije najprihvatljivija opcija mogli bi biti diskriminirani.
Uvod
U zadnjih nekoliko dana pokrenuta je inicijativa temeljem koje bi, svakom građaninu koji ugradi fotonaponsku elektranu na svoj, krov država vratila vrijednost jednak sadržanom PDV-u u računu za ugradnju elektrane. Dakle, ugradnja fotonaponskih elektrana bila bi subvencionirana s 20% kapitalne vrijednosti projekta. Postupak bi bio relativno jednostavan – građanin Poreznoj upravi predoči račun za elektranu i potvrdu ovlaštene osobe da je elektrana propisno ugrađena, a Porezna uprava građaninu isplati protuvrijednost PDV-a sadržanog u računu. Takva kapitalna pomoć mogla bi pozitivno utjecati na financijsku opravdanost ulaganja u krovne fotonaponske elektrane. Kako bi se procijenio intenzitet takve potpore, valja prije svega ustvrditi, ili procijeniti, je li ulaganje u krovne fotonaponske elektrane financijski opravdano bez potpore. Principijelno, javne potpore opravdano je dodjeljivati projektima koji su društveno opravdani (prihvatljiva ekonomska stopa povrata) i financijski neodrživi (neprihvatljiva financijska stopa povrata).
Prema izračunima financijske opravdanosti na koje se može naići u medijima, ulaganje u krovne fotonaponske elektrane financijski je opravdano i bez kapitalne pomoći (potpore). U tim prezentacijama građane se potiče na ulaganje u fotonaponske elektrane na svojim krovovima iz razloga što se investicija ”vraća” kroz nekoliko godina. Međutim, valja skrenuti pozornost da se takvi izračuni temelje na pretpostavci da u 25 godina eksploatacije elektrane neće nastati nikakvi troškovi osim kapitalnog ulaganja i, eventualno, zamjene invertera. Koliko je to realna pretpostavka građani mogu procijeniti iz vlastitog iskustva.
Ušteda
Temeljni princip procjene financijske opravdanosti ulaganja u krovnu fotonaponsku elektranu proizlazi iz ostvarene uštede iz kojih se namiruju troškovi projekta. U tom smislu kalkulacija financijske opravdanosti je primarno oportunitetna. Uštedu predstavlja razlika troškova energenata prije i nakon ulaganja. U slučajevima kada investitor koristi isključivo električnu energiju kao jedini energent tada će ušteda biti definirana razlikom godišnjih troškova za električnu energije prije i nakon ugradnje fotonaponske elektrane. Međutim, u slučajevima kada investitor koristi i druge energente (primjerice, ukapljeni plin, loživo ulje, pelete i slično) ušteda će biti određena kombinacijom troškova energenata prije ulaganja i kombinacijom energenata s uključenom energijom iz fotonaponske elektrane. Što su troškovi energenata prije
ulaganja veći to će i ušteda iz koje se namiruje ulaganje u fotonaponsku elektranu biti veća. Naravno, pretpostavlja se ugradnja fotonaponske elektrane optimalnog kapaciteta. Optimalnost kapaciteta ovisi o brojnim faktorima od kojih su najznačajniji odnos potrošene i proizvedene energije (veća proizvodnja u odnosu na potrošnju predstavlja rizik promjene statusa investitora iz proizvođača za vlastite potrebe u proizvođača za tržište), potencijalno korištenje električnog vozila, sudjelovanje u energetskoj zajednici, promjena cijene energenata te sigurnost u opskrbi energijom. Optimalna fotonaponska elektrana proizvodi energiju koja će se u cijelosti potrošiti za vlastite potrebe. U slučaju promjene propisa u budućnosti, mogućnosti povoljne prodaje energije na otvorenom tržištu putem agregacije, trgovanja energijom među članovima energetske zajednice i slično, optimalnost će vjerojatno biti određena drugim parametrima.
Kapitalna pomoć
Kapitalna pomoć predstavlja doprinos primitcima projekta zbog kojih se smanjuje kapitalna vrijednost ulaganja ili, drugim riječima, povećavaju primitci koji doprinose većoj vrijednosti operativnog rezultata pa je, stoga, projekt financijski prihvatljiviji. Općenito, subvencionirati ima smisla one projekte koji su ekonomski opravdani, ERR(C) > granične stope, a financijski neodrživi, FRR(C) < granične stope. Financijska granična stopa obično je određena prosječnom ponderiranom cijenom izvora financiranja (WACC). U tom smislu kapitalna pomoć doprinosi financijskoj održivosti, ili, prihvatljivosti projekta pa bi, ujedno, i njen iznos trebao biti rezultat izračuna temeljenog na određenoj graničnoj financijskoj stopi povrata projekta. U tom smislu, kapitalna pomoć jednaka vrijednosti PDV-a u računu za fotonaponsku elektranu (preračunata stopa PDV-a od 20%), zasigurno će povećati financijsku prihvatljivost projekta ulaganja u krovnu fotonaponsku elektranu, ali nije sasvim jasno iz kojeg je razloga ona upravo 20% kapitalne vrijednosti projekta i je li taj iznos rezultat opisanih izračuna.
Najvjerojatnije nije, ali u svakom slučaju može doprinijeti motivaciji građana da se lakše odluče na ulaganje.
Primjer
U primjeru će se prikazati utjecaj troškova uključenih u izračun na FRR(C) i razdoblje povrata.
Budući da u našoj zemlji nema još, uglavnom, fotonaponskih elektrana čija je eksploatacija okončana zbog istrošenosti ili zastarijevanja, a nisu niti poznati podatci o urednom evidentiranju svih detalja o troškovima i proizvodnji, ovdje će se prikazati simulacije izračuna temeljenih na poznatim podatcima iz poslovanja drugih elektrana opisivanih u raznim studijama, stručnim i znanstvenim člancima. Podatci o potrošnji i cijenama energije preuzeti su iz stvarnog kućanstva građana koji sustavnim izračunanima priprema odluku o ulaganju. S obzirom na sumnju u prezentiranu financijsku održivost fotonaponskih elektrana u medijima, investitor priređuje simulacije s obzirom na:
Obuhvat troškova (ulaganje, zamjena invertera, troškove i strukturu financiranja, troškove održavanja i zamjene istrošenih materijala, troškove uklanjanja i slično);
Raspoloživost elektrane u životnom vijeku;
Učinak zaštite od porasta cijene električne energije u budućnosti;
Inflaciju;
Rizike;
Učinak kapitalne pomoći na financijsku prihvatljivost;
Uključivanje novih trošila u kućanstvu (električno vozilo) i slično.
Pretpostavke projekta su opisane u tablici 1:
Tablica 1: Pretpostavke projekta (Izvor:Autor)
Objašnjenje pretpostavki projekta
Investitor za namirenje svojih energetskih potreba koristi električnu energiju iz mreže. S obzirom na ukupnu godišnju potrošnju od 4 693 kWh ugradit će fotonaponsku elektranu snage 4.15 kWp sastavljenu od 10 fotonaponskih panela vršne snage 415 Wp. Životni vijek elektrane je 25 godina, a njena proizvodna efikasnost smanjit će se 20% u zadnjoj godini horizonta planiranja. Pretpostavlja se da će elektrana u životnom vijeku raditi neprekidno, tj. da će njena raspoloživost biti 100% iako postoji stanovita vjerojatnost da ta pretpostavka neće biti održiva osobito u vrijeme zamjene invertera.
Pretpostavlja se da će se inverter zamijeniti u 12. godini, a njegova cijena (kalkulacija je priređena na temelju stalnih cijena) iznosit će 392 €. Investitor koristi tzv. bijeli tarifni model s ukupnim jediničnim cijenama (nakon 1. travnja 2022. godine) od 1.15 kn/kWh za višu dnevnu tarifu (VT) te 0.531 kn/kWh za nižu (NT) noćnu tarifu što s obzirom na omjer potrošnje VT i NT od 86% i 14% respektivno daje prosječnu ponderiranu cijenu električne energije iz mreže od 1.063 kn/kWh.
Nabavna cijena elektrane po principu”ključ u ruke” iznosi 4 905 € odnosno 1 182 €/kWp. Investitor pretpostavlja da će troškovi premije osiguranja elektrane iznositi 15 €/godišnje te da će troškovi preventivnog održavanja iznositi 5 €/godišnje. U sklopu analize financijskih učinaka procijenit će se i učinak kapitalne pomoći (grant, subvencija) koja se najavljuje u javnosti. Na kraju životnog vijeka, investitor pretpostavlja na temelju prikupljenih informacija, snosit će troškove uklanjanja panela u svoti od 25 €/panelu te zbrinjavanja od 20 €/panelu.
Troškovi se grupiraju u pet grupa:
Kapitalni troškovi (točnije, kapitalna vrijednost projekta),
Troškovi financiranja odnose se na kamatu kredita koji investitor pribavlja za namirenje kapitalne vrijednosti projekta uz kamatnu stopu od 4% godišnje na 10 godina i naknadu 0.75%. Rizici su procijenjeni na temelju izračuna razlike najvjerojatnije vrijednosti i očekivane vrijednosti u okviru primijenjene triangularne distribucije vjerojatnosti gdje je pouzdanost najvjerojatnije vrijednost (ML) korigirana uniformnom distribucijom – pouzdanost ML vrijednosti od 100% producira triangularnu distribuciju, a pouzdanost od 0% producira uniformnu distribuciju vjerojatnosti.
Priređene su simulacije (slučajevi) nekoliko opcija obuhvata troškova:
S0: Pretpostavlja se da će investitor ulaganje financirati u cijelosti iz vlastitih izvora financiranja te da, osim kapitalne vrijednosti projekta, u 25 godina neće imati drugih troškova[8];
S1: Pretpostavlja se da će investitor snositi kapitalnu vrijednost projekta i troškove zamjene invertera;
S2: Pretpostavljaju se troškovi kapitalne vrijednosti projekta, zamjene invertera te financijskih troškova u slučaju financiranja iz tuđih (banka) dužničkih (kredit) izvora financiranja;
S3: Svi troškovi uključeni i opciji S2 uvećano za operativne troškove (preventivno održavanje, premija osiguranja te troškovi demontaže i zbrinjavanja);
S4: Svi troškovi uključeni u S3 uvećano za rizike;
S0G, S1G, S2G, S3G, S4G: prethodne opcije s uključenim grantom od 20% kapitalne vrijednosti projekta s PDV-om.
Projekcije ukupnih životnih troškova prikazane su u tablici 2:
Tablica 2: Obuhvat troškova s obzirom na simuliranu opciju
Izvor: Izračuni na temelju podataka iz tablice 1.
Uštede projekta
Uključivanjem pojedinih vrsta troškova smanjuje se ukupna ušteda iz koje se namiruju troškovi projekta. Logična posljedica uključivanja novih troškova s obzirom na opciju je i povećanje jedinične cijene električne energije proizvedene iz fotonaponske elektrane. Projekcija uštede i jediničnih cijena energije prikazana je u tablici 3:
Tablica 3: Projekcija ušteda i jediničnih cijena energije iz fotonaponske elektrane
Izvor: Izračuni na temelju podataka iz tablice 1.
Jedinični trošak energije iz elektrane računa se kao odnos ukupnih životnih troškova i proizvedene energije dok je jedinična ušteda jednaka razlici jedinične cijene iz mreže i fotonaponske elektrane. S ovim pokazateljem povezan je i pokazatelj koji se često puta koristi u analizama i ocjeni učinka fotonaponskih elektrana – LCOE (Levelized COsts of Electricity) s tom razlikom što se kod primjene LCOE stavke diskontiraju. Svaka opcija prikazana je i s učinkom kapitalne pomoći te posljedice smanjenja ukupnih životnih troškova uslijed povrata PDV-a sadržanog u kapitalnoj vrijednosti projekta.
Financijska opravdanost ulaganja u fotonaponsku elektranu
Financijska opravdanost ulaganja u fotonaponsku elektranu mjeri se pokazateljem financijske stope povrata projekta FRR(C) koji predstavlja prosječnu godišnju stopu ”ukamaćivanja” uloga u životnom vijeku projekta. Ta stopa ujedno predstavlja i maksimalnu prihvatljivu prosječnu ponderiranu stopu izvora financiranja. Vrijednost ulaganja (kapitalna vrijednost fotonaponske elektrane) stavlja se u odnos s godišnjim razlikama ušteda (razlike troškova energenata prije i nakon ulaganja) i operativnih troškova (premija osiguranja, održavanje i zamjena istrošenih materijala, čišćenje panela, demontaža i zbrinjavanje na kraju životnog vijeka, rizici i slično). Pretpostavlja se da je prihvatljiva financijska stopa povrata projekta veća ili jednaka prosječnom ponderiranom trošku izvora financiranja koji se, najmanje, sastoje od vlastitih i tuđih (npr. kredit) izvora financiranja. FRR(C) predstavlja, ujedno, i prinos koji investitor može očekivati ukoliko ulaže u projekt fotonaponske elektrane ukoliko projekt financira iz vlastitih izvora financiranja.
Drugi, derivirani pokazatelj opravdanosti ulaganja je pokazatelj razdoblja povrata koji se u javnosti najčešće koristi, a predstavlja razdoblje (godina) u kojoj je kumulativna vrijednost razlike ulaganja i troškova jednak kumulativnoj vrijednosti ušteda. Treći pokazatelj je financijska neto sadašnja vrijednost ulaganja FNPV(C). Ovaj pokazatelj proizlazi iz iste funkcije kao i FRR(C) s time što rezultat pokazuje na drugi način. Naime, za izračun ovog pokazatelja određuje se ciljana diskontna stopa i odbacuje apsolutnu vrijednost novčanih jedinica. Ukoliko je apsolutna vrijednost novčanih jedinica pozitivna, korist od ulaganja veća je od diskontne stope (npr. prosječne ponderirane stope izvora financiranja – WACC) pa je ulaganje prihvatljivo iz razloga što se iz operativnog rezultata u cijelosti mogu namiriti izvori financiranja. Ta vrijednost novčanih jedinica predstavlja razliku između diskontne stope i FRR(C).
Ukoliko se poslovanje fotonaponske elektrane bude odvijalo u skladu s pretpostavkama opisanim u tablici 1, tada investitor može očekivati prinose prikazane u tablici 4:
Tablica 4: Pokazatelji financijske opravdanosti
Izvor: Rezultati simulacije.
Razdoblje povrata
Kao što je i naprijed navedeno, uključivanje troškova u projekciju smanjuje stopu povrata FRR(C) i povećava razdoblje povrata. Ukoliko je za investitora najvjerojatnija projekcija opisana slučajem S4 tada može očekivati prinos od 2.65% godišnje. Odluka o prihvatljivosti ove vrijednosti ovisit će ponajviše o investitorovim alternativama. Na primjer, investitor može svotu ekvivalentnu kapitalnoj vrijednosti ulaganja od 4 905 € uložiti na depozit u komercijalnoj banci.
Prinos će biti relativno mali, manji od 1%. Ukoliko za investitora ta dva ulaganja nose jednake rizike, tada je prihvatljivije uložiti u fotonaponsku elektranu. Međutim, ukoliko ostvari pravo na kapitalnu pomoć od 20% kapitalne vrijednosti projekta (povrat PDV-a od 25% u računu za elektranu) tada će se ovaj prinos od 2.65% povećati na 8.82% godišnje što može predstavljati primjerenu kompenzaciju za ostale nekvantificirane rizike. Usporedba stope povrata projekta i razdoblja povrata ulaganja s i bez kapitalne pomoći prikazana je na grafikonu 1:
Grafikon 1: Ovisnost FRR(C) i razdoblja povrata o kapitalnoj pomoći za različite simulacijske opcije
Izvor: Rezultati iz tablice 4.
Utjecaj promjene cijene električne energije
Razdoblje povrata ulaganja od 11.63 godine do 21.63 godine (S0-S4 bez granta) smanjit će se na 8.79 do 14.34 godine s grantom. Grant ima sličan utjecaj na stopu povrata projekta, tj. očekivani prinos na ulog od 4 905 € u razdoblju od 25 godina. Prinos od 7.84% do 2.65% (S0-S4 bez granta) povećat će se na 14.20% do 8.82% s grantom. Međutim, neovisno o opravdanosti ulaganja u fotonaponsku elektranu pod opisanim pretpostavkama, glavni razlog opravdanja ulaganja u krovnu elektranu leži u zaštiti od povećanja cijene električne energije iz mreže. Naravno, ukoliko investitor koristi i druge energente onda u ovu kalkulaciju treba uključiti i očekivane stope povećanja cijena ostalih energenata. Odnos stope povrata i razdoblja povrata ulaganja o prosječnoj godišnjoj stopi povećanja cijene električne energije prikazan je na grafikonu 2:
Grafikon 2: Ovisnost pokazatelja FRR(C) i RP o povećanju cijene električne energije iz mreže
Izvor: Rezultati simulacije autora.
Rezultati simulacije na grafikonu 2 priređeni su na temelju slučaja S4 i S4G te pretpostavke stope inflacije od 4% godišnje. U slučaju inflacije od 4% i bez povećanja cijene električne energije iz mreže ulaganje u fotonaponsku elektranu, prema ovim kriterijima ne bi bilo financijski opravdano. Međutim, uz povećanje cijene električne energije iz mreže ulaganje je opravdano osobito uz kapitalnu pomoć. Uz stopu inflacije od 4% godišnje bez povećanja cijene električne energije iz mreže, u slučaju opcije S4, ulaganje financijski ne bi bilo opravdano međutim, uz kapitalnu pomoć od 20% kapitalne vrijednosti projekta FRR(C) iznosi 5.82% godišnje što bi bilo prihvatljivo. S očekivanim prosječnim godišnjim rastom cijene električne energije iz mreže ulaganje je financijski opravdano s i bez kapitalne pomoći. Upravo u slučaju S4 s inflacijom i bez povećanja cijene električne energije iz mreže temelji se opravdanost kapitalnog pomaganja građana prilikom ulaganja u krovne fotonaponske elektrane.
Nabava fotonaponske elektrane i kapitalna pomoć
U raspravama o kapitalnom pomaganju građana prilikom nabave krovnih fotonaponskih elektrana povratom uplaćenog PDV-a pretpostavlja se da je građanin, vlasnik zgrade na čijem se krovu ugrađuje elektrana, investitor. Dobavljač dobavlja elektranu, ugrađuje je te za izvršene radove isporučuje račun građaninu. Građanin – investitor je primatelj računa te s takvim računom Poreznoj upravi dokazuje pravo na isplatu kapitalne pomoći, u naravi 20% od ukupne vrijednosti računa koji glasi na njega. Međutim, na tržištu postoje i alternativni modeli nabave fotonaponskih elektrana koji ne podrazumijevaju građanina – vlasnika zgrade na čijem se krovu ugrađuje elektrana kao investitora i na kojega ne glasi račun za izvršene radove.
PVaaS
Radi se o modelima u okviru kojega treća osoba (investitor) ugrađuje fotonaponsku elektranu na krov vlasnika zgrade (korisnika energije) te mu isporučuje uslugu raspoloživosti fotonaponske elektrane (PVaaS – PhotoVoltaic as a Service), a građanin – korisnik usluge raspoloživosti plaća investitoru mjesečnu naknadu za uslugu raspoloživosti elektrane obično oko 10 godina. Slična je situacija i kada građanin sklapa ugovor o nabavi električne energije od investitora koji je na krovu zgrade u vlasništvu građanina ugradio elektranu pa građaninu prodaje po unaprijed određenoj cijenu električnu energije (PPA – Power Purchase Agreement) isto u razdoblju od oko 10 godina ili više. I u tom slučaju građanina – vlasnik krova također nije investitor i račun za izvršene radove ugradnje fotonaponske elektrane ne glasi na njega već na investitora – treću osobu.
Ukoliko se donesu propisi kojim će se pravo na kapitalnu pomoć omogućiti samo građanima – investitorima, ostali građani koji procijene da su im alternativni modeli prihvatljiviji, bit će nepravedno diskriminirani, smanjit će im se priuštivost i dostupnost povoljne energije. Kod građanina – investitora PDV je sadržan u računu za radove, a kod građanina korisnika usluge u računu za isporučenu naknadu za raspoloživost ili računu za isporučenu električnu energiju. Stoga bi se propisima, kojima će se urediti isplata uplaćenog
PDV-a kao kapitalna pomoć, trebalo uzeti u obzir okolnosti svih raspoloživih legitimnih modela.
Zaključak i preporuke
Stupanjem na snagu nove direktive Vijeća Europske unije (EU) 2022/542 stvorila se mogućnost da Vlada Republike Hrvatske predloži propis kojim će se, smanjivanjem ili ukidanjem stope PDV-a dodatno stimulirati građane na ulaganje u krovne fotonaponske elektrane. Provedenom analizom pokazano je da, unatoč često neargumentiranim tezama u medijima o neupitnoj profitabilnosti i financijskoj opravdanosti ulaganja u fotonaponske elektrane, postoje granični slučajevi i rizici financijske neopravdanosti ulaganja.
Stoga bi usvajanje prijedloga vezanog uz povrat PDV-a u računima nabavljenih i ugrađenih fotonaponskih elektrana bila dobra mjera zaštite građana upravo od opisanih graničnih slučajeva. No, ostaje pitanje je li ova mjera cjelovito razrađena. Primjerice, valja postaviti pitanje: hoće li i građani koji ne nabavljaju radove ugradnje solarnih elektrana na svojim krovovima i nisu investitori, tj. građani koji sklapaju PVaaS ili PPA ugovor također imati pravo na kapitalnu pomoć kojom će si omogućiti plaćanje manje cijene naknade za raspoloživost (PVaaS) ili manju cijenu proizvedene energije (PPA)?
Proširena verzija teksta originalno objavljenog u Časopisu Centra za Razvoj javnog i neprofitnog sektora, Tim4Pin br.5 2022
Sredinom listopada ove godine objavljen je Zakon o tržištu električne energije (ZTEE) kojim se uvode brojene novine od kojih nam je, za potrebe ovog teksta, interesantan dio koji se odnosi na energetske zajednice. Radi se o mogućnosti udruživanja građana u formacije koje bi im omogućile zajedničku proizvodnju električne energije (ovdje pretpostavljamo energiju proizvedenu tehnologijom fotonaponskih elektrana) te međusobno dijeljenje proizvedene energije u obuhvatu iste trafostanice. Zakon izaziva podijeljene stavove u pogledu njegovog potencijala ubrzavanja individualne mikro-proizvodnje električne energije te međusobnog dijeljenja (trgovanja) proizvedenim viškovima energije među članovima energetske zajednice.
Uvod
U posljednjih nekoliko godina, od kada su se cijene solarnih panela značajnije smanjile, fotonaponske elektrane postale su financijski samoodrživi projekti. Mogućnost postizanja profitabilnosti ulaganjem u fotonaponske elektrane opravdano usmjerava pozornost građana na ulaganje. Također, u posljednje vrijeme često se nailazi i na pojam ”prosumer”, riječ sastavljena od ”producer” i ”consumer”, a označava subjekta koji troši (consumer) električnu energije, ali je ujedno i proizvodi (producer). Uloga subjekta u potrošnji električne energije je poznata, ali pitanja, osobito ona praktična, provedbena, otvaraju se upravo u pogledu procesa proizvodnje električne energije.
U energetske zajednice čija je svrha proizvodnja i dijeljenje proizvedene električne energije mogu se udruživati građani međusobno, ali, s njima ili samostalno i ostali subjekti poput jedinica lokane, područne (regionalne) samouprave, ustanove, komunalna društva i drugi subjekti okupljeni oko jedne transformatorske stanice. Ovdje je najintrigantnije ta ograničena mogućnost udruživanja na lokaciji obuhvaćenoj jednom transformatorskom stanicom koja značajno ograničava smisao dijeljenja proizvedene električne energije. Naglašava se da članovi energetske zajednice proizvedenu energiju mogu dijeliti, ali ne i prodavati.
Udruživanje građana u svrhu dijeljenja energije
Odredbom članka 26. ZTEE određeno je da se građani mogu udružiti kako bi zajednički proizvodili i dijelili proizvedenu energiju u svrhu vlastite potrošnje. To će učiniti posredstvom tzv. energetskih zajednica. Energetska zajednica građana je pravna osoba koja je osnovana na području Republike Hrvatske, čiji se vlasnici udjela ili članovi dobrovoljno udružuju kako bi ostvarili prednosti razmjene energije proizvedene i potrošene na određenom prostornom obuhvatu lokalne zajednice. Osobito je važno istaknuti da vlasnik udjela ili član u energetskoj zajednici građana može biti fizička ili pravna osoba, uključujući jedinice lokalne samouprave, mikropoduzeće ili malo poduzeće čije je mjesto stanovanja, poslovnog nastana ili poslovnog prostora na području jedinice lokalne samouprave u kojoj je sjedište energetske zajednice građana. Dakle, propis dozvoljava da se građani udruže s osobama javnog prava poput gradova, općina, ustanova ili komunalnih društava kako bi bolje iskoristili potencijal mogućnosti proizvodnje i (interne) potrošnje (u naravi, dijeljenja) proizvedene električne energije.
Aktivnosti energetske zajednice
Energetska zajednica građana može sudjelovati u proizvodnji električne energije za potrebe vlasnika udjela odnosno članova energetske zajednice građana i to:
Iz obnovljivih izvora energije;
Opskrbi električnom energijom vlasnika udjela odnosno članova energetske zajednice građana;
Upravljanju potrošnjom električne energije vlasnika udjela odnosno članova energetske zajednice građana;
Agregiranju vlasnika udjela odnosno članova energetske zajednice građana;
Skladištenju energije za vlasnike udjela odnosno članove energetske zajednice građana;
Uslugama energetske učinkovitosti za vlasnike udjela odnosno članove energetske zajednice građana;
Uslugama punjenja za električna vozila vlasnika udjela odnosno članova energetske zajednice građana;
Može pružati druge energetske usluge vlasnicima udjela odnosno članovima energetske zajednice građana u skladu s pravilima kojima se uređuju pojedina tržišta električne energije.
No, odredbom članka 3. ZTEE u točki 21. definirano je značenje energetske zajednice na način da se ona smatra ”pravnom osobom koja se temelji na dobrovoljnom i otvorenom sudjelovanju te je pod stvarnom kontrolom članova ili vlasnika udjela koji su fizičke osobe, jedinice lokalne samouprave ili mala poduzeća, a čija je primarna svrha pružanje okolišne, gospodarske ili socijalne koristi svojim članovima ili vlasnicima udjela ili lokalnim područjima na kojima djeluje, a ne stvaranje financijske dobiti i koja može sudjelovati u proizvodnji, među ostalim iz obnovljivih izvora, opskrbi, potrošnji, agregiranju, skladištenju energije, uslugama energetske učinkovitosti ili uslugama punjenja za električna vozila ili pružati druge energetske usluge svojim članovima ili vlasnicima udjela.
Problem neprofitnosti
Također, odredbom članka 26. određeno je da energetska zajednica djeluje na temelju zakona kojim se uređuje financijsko poslovanje i računovodstvo neprofitnih organizacija. Ovdje treba dodati i to da niti u Direktivi niti u ZTEE nije jasno definiran pojam ”dijeljenja” energije unutar zajednice. Dijeljenje energije može biti uz kakvu nadoknadu ili bez nje. Nadoknada može biti financijski ili naturalno nominirana. U tom smislu nije jasno je li dopuštena kakva nadonada za podijeljenu energije ili je ona zabranjena. Naravno, zabrana nadoknade onome koji dijeli svoj višak energije trebala bi biti nedopustiva jer, moglo bi se tako reći, diskriminira prava člana zajednice na zaradu ukoliko se svi članovi zajednice dogovore u pogledu cijene podijeljenog viška energije.
Konačno, član zajednice koji potrebuje energiju može je preuzeti iz mreže i za preuzetu energiju platiti će naknadu (cijenu energije – kn/kWh). On tu cijenu smatra ekonomski opravdanom. Pitanje je zašto ne bi mogao kupiti energiju od svog člana zajednice koji u tom trenutku ima višak energije po manjoj cijeni od one mrežne (ukoliko takva okolnosti nastanu). Zašto se članovima zajednice (onome koji predaje svoj višak energije onome koji trenutno potražuje energiju) ne bi omogućila ekonomsko-financijska korist – jednom dodatni prihod, a drugome postizanje uštede? Tim više što se ovi prihodi i rashodi za kupljenu (podijeljenu) energiju ne evidentiraju na računu pravne osobe energetske zajednice već na privatnim računima članova zajednice. To su svakako pitanja na koja bi trebalo dati jasne odgovore prije početka provedbe zacrtanih ciljeva energetske tranzicije i operativnog udruživanja građana u energetske zajednice.
EU regulativa
Navedene odredbe mogle bi svojim nejasnim formulacijama značajnije otežati neposrednu organizaciju, ustroj i konačnu provedbu zamišljene svrhe i ciljeva. Naime, iz navedenih odredbi dalo bi se zaključiti da gospodarska korist ne podrazumijeva ostvarivanje financijske dobiti. Također, tu je i ograničenje ili osiguranje zakonodavca da energetske zajednice ne smiju se pravno ustrojavati ni na jedna drugi način osim na način koji podrazumijeva evidentiranje poslovnih promjena sukladno pravilima neprofitnih organizacija, dakle, udruga ili zadruga. Ovo bi moglo biti sporno iz razloga što direktiva Europske unije u točki 44. preambule ističe da bi ”države članice trebale moći osigurati da energetske zajednice građana budu subjekt bilo kojeg oblika, na primjer udruga, zadruga, partnerstvo, neprofitnu organizaciju ili malo ili srednje poduzeće, sve dok takav subjekt može, djelujući u svoje ime, izvršavati prava i podlijegati obvezama”.
Dakle, ostaje pitanje iz kojih je razloga zakonodavac od svih navedenih mogućnosti osnivačkih formi hrvatske građane ograničio isključivo na neprofitne organizacije. Takve formulacije ZTEE mogle bi u neposrednoj praksi polučiti cijeli niz spornih situacija.
Nabava i eksploatacija fotonaponskih postrojenja
Energetska zajednica, da bi ostvarila svrhu svojeg osnivanja, pozornost će usmjeriti na dvije grupe procesa. Prva se odnosi na pripremu, nabavu, projektiranje, montažu, financiranje i održavanje fotonaponskog postrojenja dok se druga grupa procesa odnosi na dijeljenje proizvedene energije među članovima zajednice. No, prije praktične provedbe projekta valja odgovoriti na nekoliko pitanja.
Hoće li pravni vlasnik fotonaponske elektrane biti energetska zajednica kao pravna osoba ili će pravni vlasnici biti članovi zajednice koji elektrane montiraju na svojim krovovima?
Tko će u tim slučajevima biti ekonomski vlasnik?
Hoće li se viškovi proizvedene energije dijeliti između članova zajednice koji su njeni suvlasnici ili će suvlasnici zajednice svoje viškove moći dijeliti i s ostalim susjedima unutar jedne trafostanice koji nisu formalni vlasnici pravne osobe energetske zajednice?
Hoće li se dijeljenje operativno provoditi uz financijsku nadoknadu (hoće li se moći međusobno trgovati proizvedenim viškovima) ili će se proizvedeni viškovi poklanjati članovima zajednice? Ili će se, pak, unaprijed formirati neka obračunska cijena proizvedenih viškova koja će se po određenim ključevima dijeliti među članovima?
Najposlije, kako će se viškovi energije dijeliti među njenim članovima u slučajevima kada je ponuda viškova manja od potražnje za energijom među članovima?
Tko će u tom slučaju imati prioritet u preuzimanju viškova energije – proporcionalna podjela ili podjela po kriteriju ponuđene najveće cijene?
Opću organizaciju odnosa subjekata unutar i izvan energetske zajednice unutar jedne trafostanice moguće je ilustrirati shemom 1:
Shema 1: Opća organizacijska shema odnosa unutar energetske zajednice (Izvor: Autori)
Legenda: G – građanin član energetske zajednice ili građanin koji nije član energetske zajednice, ali je obuhvaćen područjem iste trafostanice.
Nabava fotonaponskih postrojenja
Racionalni članovi energetske zajednice u fazi pripreme, a po formalnom osnivanju energetske zajednice, koja bi u okviru ZTEE mogla biti ili udruga ili zadruga, postavit će pitanje načina nabave postrojenja. Hoće li elektranu nabaviti kao radove, kao uslugu raspoloživosti ili pak površine u svom pravnom vlasništvu dati trećoj osobi i s njom sklopiti ugovor o otkupu energije (tzv. PPA ugovor). Opciji nabave radova prethodi nabava projektiranja i financiranja. Slijedi nabava izvođača radova (montaže fotonaponske elektrane) te održavanje elektrane u njenom životnom vijeku. Ovdje valja istaknuti da rizike projektiranja i održavanja, a dijelom i montaže, preuzima energetska zajednica. Članovi zajednice će, u tom smislu, procijeniti svoje znanje i vještine u provedbi ovih procesa, tj. njihov kapacitet za preuzimanje spomenutih grupa rizika. U ovom slučaju energetska zajednica bit će trajni pravni i ekonomski vlasnik postrojenja. Sva proizvedena energija pripada energetskoj zajednici.
U okviru druge opcije, nabave raspoloživosti fotonaponske elektrane, energetska zajednica će prirediti idejni projekt s točno definiranim izlaznim karakteristikama postrojenja te nabaviti izvršitelja projekta koji će, na temelju idejnog projekta i definiranim standardima, projektirati, financirati, montirati i održavati postrojenje u njegovom životnom vijeku. Tijekom razdoblja trajanja ugovora o nabavi elektrane zajednica će plaćati naknadu za raspoloživost izvršitelju dokle god je elektrana funkcionalna sukladno definiranim standardima i izlaznim karakteristikama projekta. U ovom slučaju energetska zajednica bit će trajni pravni vlasnik postrojenja, ali će ekonomski vlasnik biti izvršitelj. Po prestanku ugovora energetska zajednica postat će i ekonomski vlasnik. Sva proizvedena energija pripada energetskoj zajednici.
U trećem slučaju članovi zajednice nabavit će izvršitelja koji će postrojenje projektirati, montirati, financirati i održavati te s energetskom zajednicom, ili njenim članovima, sklopiti ugovor o otkupu električne energije na temelju, ukoliko je raspoloživo, unaprijed određene količine i cijene. Ovdje sva proizvedena energija može pripadati energetskoj zajednici ili njenom članovima, ovisno o sadržaju ugovora.
U ovim procesima vezanim za nabavu fotonaponskog postrojenja građanina se prepoznaje u ulozi suvlasnika energetske zajednice koji svojim financijskim doprinosom sudjeluje u cjelovitom ili djelomičnom financiranju nabave elektrane. Ovdje se postavlja pitanje tko će biti pravni vlasnik elektrane – energetska zajednica ili građanin član zajednice? Moguće su obje opcije.
Eksploatacija fotonaponske elektrane
Nakon što se fotonaponska elektrana montira i stavi u uporabu, očekuje se da će članovi zajednice koristiti proizvedenu energiju. Energija će se koristiti, najvjerojatnije, na slijedeće načine:
Za vlastitu potrošnju (svaki član zajednice će energiju proizvedenu na, na primjer, krovu njegove zgrade, prvo iskoristiti za svoje energetske potrebe sve kako bi skuplju energiju iz mreže supstituirao s jeftinijom iz vlastitog postrojenja i time ostvario uštede);
Višak proizvedene energije podijelit će s članovima zajednice;
Manjak energije nadomjestiti preuzimanjem viškova proizvedenih na fotonaponskim elektranama drugih članova zajednice koji u datom trenutku raspolažu viškovima;
Manjak energije kompenzirati energijom iz mreže;
Višak energije predati mreži.
Da bi se energija mogla dijeliti i podijeljeno transparentno i sigurno obračunati i evidentirati, potreban će biti tzv. inteligentni sustav kojim bi se omogućio automatski nadzor i evidencija proizvedenih viškova i manjkova energije koja se dijeli među članovima zajednice, automatsku usporedbu cijena proizvedenih u individualnim fotonaponskim sustavima članova s cijenom energije koja se nabavlja iz mreže, a osobito evidenciju i obračun dijeljenih viškova kojim se interno trguje. U odnosu na navedeno, budući da u Direktivi i ZTEE nije jasno definirano, bit će od osobitog značaja za efikasniju provedbu energetskih zajednica jasno definirati što dijeljenje energije znači – je li to preraspodjela po unaprijed utvrđenoj stalnoj utvrđenoj cijeni ili dijeljenje podrazumijeva i trgovanje internim cijenama među članovima zajednice (možda i građana koji nisu članovi zajednice iz razloga što materijalno i financijski nisu u mogućnosti sudjelovati u nabavi fotonaponske elektrane, ali su doprinose postizanju zajedničkih interesa s formalnim članovima zajednice).
Upravljanje dijelom koji se odnosi na eksploataciju fotonaponske elektrane u okviru energetske zajednice dobro je razmotriti i mogućnost udruživanja različitih članova čiji je ritam proizvodnje i potrošnje proizvedene energije u svojevrsnom raskoraku – kada jedan član proizvodi energiju, a ne troši je, drugi član troši energiju i suprotno. Primjerice, efikasno je udruživanje građana i škole iz razloga što škola u jutarnjim satima dana troši energiju koju građani proizvode, ali ne troše jer su, najčešće, na radnim mjestima dislociranim od mjesta boravka (proizvodnje energije). S druge strane, škola u popodnevnim satima ne troši energiju dok ju građani troše. Također, škola u ljetnim mjesecima pretežiti je proizvođač energije, a građani pretežiti potrošači. Takve ”simbioze” značajno mogu doprinijeti boljem postizanju tranzicijskih ciljeva.
Financiranje nabave energetskih zajednica
Osobito važno pitanje, koje se nameće slijedom naprijed otvorenih pitanja, vezano je za financiranje nabave fotonaponske(ih) elektrana unutar energetske zajednice. Za provedbu procesa vezanih uz financiranje, važno je odgovoriti na pitanje tko je pravni i ekonomski vlasnik fotonaponskih elektrana, a osobito ukoliko su članovi energetske zajednice jedinice lokalne i područne (regionalne) samouprave te ustanove ili poduzeća u njihovom vlasništvu. Ukoliko će energetska zajednica biti investitor u fotonaponske elektrane tada će ona pribavljati izvore financiranja te ih iz naknade za raspoloživost ili cijene prodane energije ostalim članovima zajednice vraćati. Ovdje je jasno vidljivo koliko je važno precizno definirati dvostruku ulogu člana zajednice – kao suvlasnika zajednice (procesi nabave fotonaponske elektrane) te kao konzumenta energije (procesi eksploatacije fotonaponske elektrane).
Varijante nabave elektrana
Nabava elektrane najvjerojatnije će se financirati iz vlastitih izvora (doprinos članova zajednice, tzv. equity, osnivački ulog) te iz duga pribavljenog od, najčešće, komercijalnih banaka. Naravno, odnos vlastitih i tuđih dužničkih izvora ovisit će o ukupnim rizicima projekta. Na shemi 2 prezentirane su dvije mogućnosti financiranja zajednice:
Shema 2: Opcije financiranja energetske zajednice (Izvor: Autori)
U okviru mogućnosti a) na shemi 6 energetska zajednica, kao pravna osoba osnovana ulogom svojih članova, investira u fotonaponske elektrane na imovini svojih članova. Pravna osoba energetske zajednice, uz osnivačke uloge svojih članova pribavlja i dužničke izvore financiranja kako bi namirila kapitalnu vrijednost ulaganja. Pravna osnova ulaganja može biti, na primjer, ugovor o najmu imovine članova.
Pravna osoba energetske zajednice nadoknadit će dobiveno pravo ulaganja na tuđoj imovini naknadom (najamninom) vlasnicima imovine (članovima – no tu se odmah postavlja pitanje bi li mogla pravna osoba energetske zajednice sklapati ugovore o najmu imovine i drugih građana koji nisu članovi energetske zajednice). Iz cijene prodane energije svojim članovima pravna osoba energetske zajednice namirit će dužničke izvore financiranja i svesti svoj račun prihoda i rashoda na nulu (0) budući da vodi poslovne knjige prema pravilima za neprofitne organizacije. U okviru mogućnosti b) članovi energetske zajednice sami pribavljaju izvore financiranja (vlastite i tuđe – dužničke) kako bi na svojoj imovini uložili u fotonaponsku elektranu. Također, u svrhu dijeljenja viškova energije, s pravnom osobom energetske zajednice sklopit će sporazum u kojem će točno definirati pravila dijeljenja energije.
U svrhu poticanja građana na ulaganje u fotonaponske elektrane u okviru energetskih zajednica vrijedno je i otvoriti pitanje jednostavnijeg korištenja financijskih instrumenata kako bi se komercijalni izvori učinili dostupnijim, a vlastiti izvori minimizirali. Tu bi značajno mogli biti upotrijebljeni financijski instrumenti višegodišnjeg financijskog okvira u razdoblju od 2021. do 2027. Naime, Uredbom (EU) 2021/1060 programiranje, oblikovanje i primjena financijskih instrumenata značajno je olakšana. Širok spektar mogućih financijskih instrumenata upućuje na zaključak da bi se upravo za potrebe financiranja energetskih zajednica mogli kreirati instrumenti koji bi doprinijeli ubrzavanju provedbe ovakvih projekata. Prema mišljenju autora to bi mogao biti instrument bespovratne pomoći (za namirenje dijela troškova pripreme projekta) u kombinaciji sa subordiniranim zajmom. Takvim instrumentom mogla bi se olakšati i ubrzati priprema projekta građanima te omogućiti smanjenje vlastitih izvora financiranja uz veću vjerojatnost pribavljanja komercijalnih dužničkih izvora financiranja.
Zaključak
Stupanje na snagu ZTEE napravljan je veliki korak naprijed u provedbi ciljeva energetske tranzicije osobito u dijelu koji se odnosi na cilj proizvodnje energije na mjestu potrošnje dok će se odabirom tehnologije proizvodnje energije zadovoljiti i cilj vezan uz dekarbonizaciju. Međutim, postojeća artikulacija propisa nedovoljno je jasna za neposrednu provedbu zacrtanih ciljeva te unosi značajne rizike u pogledu ostvarivanja zacrtanih ciljeva. U tom smislu od osobitog je značaja u najkraćem razdoblju potaknuti i provoditi stručne rasprave kako bi se na jasan način definirali svi procesi potrebni za niskorizičnu provedbu projekata. Ubrzavanju provedbe projekata ove vrste mogao bi doprinijeti i posebno programiran kombinirani financijski instrument EU strukturiran sa kapitalnom pomoći za namirenje dijela troškova pripreme projekta te subordinirani zajam sa smanjenom kamatnom stopom i produljenim razdobljem vraćanja u odnosu na važeće tržišne uvjete.
Ovo je drugi dio proširene verzije teksta originalno objavljenog u Časopisu Centra za Razvoj javnog i neprofitnog sektora, Tim4Pin br.1 2022
Sredinom listopada ove godine objavljen je Zakon o tržištu električne energije (ZTEE) kojim se uvode brojne novine od kojih nam je, za potrebe ovog teksta, interesantan dio koji se odnosi na Energetske zajednice. Radi se o mogućnosti udruživanja građana u formacije koje bi im omogućile zajedničku proizvodnju električne energije (ovdje pretpostavljamo energiju proizvedenu tehnologijom fotonaponskih elektrana) te međusobno dijeljenje proizvedene energije u obuhvatu iste trafostanice. Zakon izaziva podijeljene stavove u pogledu njegovog potencijala ubrzavanja individualne mikro-proizvodnje električne energije te međusobnog dijeljenja (trgovanja) proizvedenim viškovima energije među članovima energetske zajednice. U ovom prvo dijelu donosimo tehničku pozadinu finkcioniranja fotonaponskih postrojenja.
Uvod
U posljednjih nekoliko godina, od kada su se cijene solarnih panela značajnije smanjile, fotonaponske elektrane postale su financijski samoodrživi projekti. Mogućnost postizanja profitabilnosti ulaganjem u fotonaponske elektrane opravdano usmjerava pozornost građana na ulaganje. Također, u posljednje vrijeme često se nailazi i na pojam ‘’prosumer’’, riječ sastavljena od riječi ‘’producer’’ i ‘’consumer’’, a označava subjekta koji troši (consumer) električnu energiju, ali je ujedno i proizvodi (producer).
Uloga subjekta u potrošnji električne energije je poznata, ali pitanja, osobito ona praktična, provedbena, otvaraju se upravo u pogledu procesa proizvodnje i dijeljenja električne energije. U energetske zajednice, čija je svrha proizvodnja i dijeljenje proizvedene električne energije, mogu se udruživati građani međusobno, ali, s njima ili samostalno, i ostali subjekti poput jedinica lokalne, područne (regionalne) samouprave, ustanova, komunalnih društava i drugih subjekata okupljenih oko jedne transformatorske stanice. Ovdje je najintrigantnija ta ograničena mogućnost udruživanja na lokaciji obuhvaćenoj jednom transformatorskom stanicom koja značajno ograničava smisao dijeljenja proizvedene električne energije, pogotovo u hrvatskom kontekstu male gustoće naselja što uzrokuje relativno veliki broj transformatorskih stanica s malim brojem priključaka. Naglašava se da članovi energetske zajednice proizvedenu energiju mogu dijeliti, ali ne i prodavati. Tako se, barem, dade zaključiti iz nedovoljno jasnih formulacija iz propisa.
U većini EU država je praksa da se ne gleda transformatorska stanica već fizička udaljenost (1 km ili sl.)
Tehnološka revolucija donijela je u proteklih sto godina demokratizaciju i proliferaciju brojnih proizvoda ili usluga koje su bile do tada dostupne vrlo uskom krugu privilegiranih. Dovoljno je samo se prisjetiti ekspanzije korištenja osobnih vozila, putovanja zrakoplovom ili dostupnosti računala i mobilnih uređaja. Primjera ima još na stotine, no sada je još jedan visoko centralizirana grana privrede na putu masovne decentralizacije – a to je proizvodnja i distribucije električne energije.
Fotonaponske elektrane nisu nova tehnologija, no značajne promjene dogodile su se u proteklih deset godina dramatičnim padom cijena solarnih panela i kontrolne opreme, pa je tako tipično fotonaponsko postrojenja za kućne instalacije snage 10 kW prije deset godina vrijedilo preko pola milijuna kuna, dok je danas cijena postrojenja sa instalacijom oko sedamdeset tisuća kuna što, čime postaje dostupno i prosječnom kućanstvu, odnosno cijena je sumjerljiva primjerice instalaciji centralnog grijanja ili toplinske pumpe.
Osim fotonapona, veliki razvoj prisutan je i u kontekstu skladištenja energije – baterijama, pri čemu baterijska postrojenja više nisu velikih dimenzija i ne zahtijevaju posebno održavanje. Ne treba zanemariti ni sve veći broj osobnih automobila na električni pogon, koji će također imati velikog utjecaja na potrošnju ali i skladištenje električne energije u vlastitim baterijama koje su često vrlo velikog kapaciteta. Pored ovih tehničkih inovacija pojavili su se i inovativni eksploatacijski modeli u kojima se nastoji sagledati cjeloživotni trošak postrojenja, pa se onda otvaraju i neke druge mogućnosti u kontekstu vlasništva i nadzora samog postrojenja, odnosno novi dugoročno održiviji financijski modeli.
Konačno, u sve nestabilnijem svijetu, biti će posebno važno osigurati si stabilne i sigurne izvore energije, čime si smanjujemo ovisnost i utjecaj eksternalija, pri čemu je kritično da su ti izvori energije i ekološki prihvatljivi, da ne povećavaju ugljični otisak i da su dugoročno ekonomski isplativi.
No, svaka nova tehnologija donosi i svojevrsne rizike (tehničke i financijske), a za razumijevanje rizika važno je razumjeti i njeno funkcioniranje, pa za početak pogledajmo koje su to osnovne komponente fotonaponskog postrojenja.
Vrste fotonaponskih sustava
Ključna zadaća FN sustava je izravno pretvaranje sunčane energije u električnu energiju kojom se omogućava rad određenog broja izmjeničnih (AC) ili istosmjernih (DC) trošila. FN sustav može imati i dodatni pričuvni sustav, tipično bateriju ili agregat što omogućava izolirani rad. Fotonaponski sustavi sastoje se od FN modula, pretvarača energije i kontrolne elektronike. Jednostavniji sustavi (za vikendice i sl.) napajaju samo istosmjerna trošila (manje lampe, radio uređaji i sl.), no uz dodatak DC/AC konvertera tada takav sustav može proizvoditi električnu energiju za sva uobičajena izmjenična trošila.
Generalno FN sustav možemo podijeliti na sljedeće skupine:
1. Samostalni (autonomni) – posve neovisni od mreže
2. Mrežni, spojeni na električnu mrežu:
aktivni (interaktivni) – dvosmjerni, mogu iz mreže preuzimati energiju ali i slati viškove iz FN
pasivni – jednosmjerni, mreža služi (samo) kao pričuvni izvor kad nema proizvodnje u FN
3. Hibridni, u biti samostalni uz dodatak obnovljivih izvora energije (najčešće vjetroelektrana).
Autonomni sustavi su po kapitalnoj vrijednosti najznačajniji od fotonaponskih sustava priključenih na distribucijsku mrežu. Razlika u kapitalnoj vrijednosti nastaje uslijed postojanja baterijskog sustava, dodatne kontrolne opreme te regulatora. Osim toga, mrežni pretvarač za fotonaponske sustave spojene na mrežu je jednostavniji po funkciji i tipično je manje snage u odnosu na autonomne sustave.
Naravno, veće kapitalne vrijednosti takvih projekata uzrokovat će i veće operativne troškove u životnom vijeku fotonaponske elektrane.
Samostalni (autonomni) FN sustav
Samostalni sustavi svu energiju za potrebe potrošača samostalno proizvode i to stvara značajne izazove. Primjerice kad električnu energiju treba isporučivati tijekom noći ili u razdobljima s malim intenzitetom Sunčevog zračenja svakako je potrebna baterija odgovarajućeg kapaciteta koja služi kao spremnik električne energije.
Ključna komponenta sustava je regulator za kontrolirano punjenje i pražnjenje baterije, a dodavanjem izmjenjivača (=12 V na ~230 V) sustav je sposoban napajati i regularna trošila poput perilica, televizora, hladnjaka, računala i manjih kućanskih aparata – naravno u skladu sa instaliranim kapacitetom FN sustava i baterija. Tipično se primjenjuju na izoliranim područjima, otocima ili udaljenim planinskim naseljima, kako za privatne tako i za poslovne primjene (npr. telekomunikacijske bazne stanica, svjetionici, sustavi nadgledanja prometnica itd.). Primjer ovog sustav prikazan je na Slika 1. Zbog manjih gubitaka poželjno je imati što više istosmjernih trošila.
Slika 1 Samostalni autonomni sustav
Hibridni FN sustavi
Osnovna ideja Hibridnog FN sustava je povećati raspoloživost i pouzdanost sustava sa povezivanjem samostalnih FN postrojenja s drugim rezervnim izvorima električne energije, poput vjetroturbina, malih hidroelektrana, pomoćnih benzinskih ili dizelskih agregata.
Suvremeni izmjenjivači omogućavaju povezivanje vjetroturbine i fotonaponskih sustava bez većih problema dajući veću sigurnost i raspoloživost isporuke električne energije te omogućavajući manje kapacitete baterija kao spremnika električne energije. Kod rješenja koja koriste benzinske i dizelske agregate sustavi se dimenzioniraju tako da se agregati minimalno koriste čime se štedi gorivo, smanjuju troškovi održavanja agregata i produžava njihov vijek trajanja. Primjer hibridnog fotonaponskog sustava prikazan je na Slika 2.
Slika 2 Hibridni FN sustav
Pasivni i aktivni mrežni FN sustav
Kompleksnost FN sustava određena je razinom automatizacije. Generalno razlikujemo pasivne mrežne FN sustave koji električnu mrežu koriste samo uvjetno, u razdobljima kada FN moduli ne mogu proizvesti dovoljne količine električne energije, primjerice noću kada su istodobno baterije prazne (Slika 3). Obično je sva regulacija ručna.
Slika 3 Pasivni mrežni FN sustav
Aktivni, interaktivni mrežni FN sustavi mrežu koriste dinamički, uzimajući energiju iz javne mreže u slučaju većih potreba ili kada je energija jeftina, odnosno vraćajući je u javnu mrežu u slučaju viškova električne energije proizvedene u FN modulima ili kada je energiju isplativo prodavati (Slika 4). Tipično su takvi sustavi automatizirani i autonomni, a ako su povezani sa nekom AI/ML logikom mogu izvoditi i kompleksnije algoritme za trgovanje električnom energijom.
Slika 4 Aktivni mrežni FN sustav
Spajanje sustava na mrežu
Fotonaponski sustavi spajaju se preko izmjenjivača na distribucijsku mrežu, pri čemu sami proizvode istosmjernu struju u FN panelima koju treba naknadno pretvoriti u izmjenični napon mrežne frekvencije kako bi napajali trošila ili radili paralelno s elektroenergetskom mrežom. Za održavanje kvalitete frekvencije i napona zadužena je javna elektroenergetska pri čemu se u slučaju odstupanja automatski isključuje odnosno prekida rad izmjenjivača.
Problematika stabilnosti mreže vrlo je kompleksna i prelazi okvire ovog članka, no treba napomenuti da su mogući i loši utjecaji FN sustava spojenih na distribucijsku mrežu (ukoliko nije izvedeno po standardima), primjerice povećavanje struje kratkog spoja, narušavanje osjetljivosti zaštite u elektroenergetskoj mreži, utjecaj na kvalitetu električne energije, raspoloživost distribucijske mreže, te povećanje gubitaka u mreži. Utjecaji ovise o snazi izvora (FN sustava), njegovoj potrošnji na mjestu priključka i osobini postrojenja, te karakteristikama distribucijske mreže na koju se spaja. Povezivanje FN sustava na mrežu predstavlja i nove izazove za mrežne operatore koji sada imaju tokove snage u dva smjera, a ne samo prema potrošaču stoga nužno zadovoljavanje svih pozitivnih zakonskih normi.
Osim problematike fizičke proizvodnje električne energije važno je i pravilno mjerenje, evidencija viškova ili manjkova, te cijeli kontekst trgovanja energijom. Kod uobičajenog načina spajanja FN sustava na mrežu, izlazna struja iz FN sustava služi za snabdijevanje primarno potrošača u kućanstvu, a proizvedeni višak predaje u mrežu (Slika 5).
Slika 5 Uobičajeno spajanje FN sustav na mrežu
Inteligentno upravljanje sustavom (proizvodnja, potrošnja i trgovina električnom energijom)
Važan element uspostave održivog FN postrojenja je upravljanje (ako je moguće automatizirano) za procesima proizvodnje, potrošnje i prodaje električne energije.
Jezgra sustava je pametno električno brojilo (Prosumer mjerilo) koje omogućava kontrolu energetskih tokova u FN postrojenju. Prosumer može biti relativno jednostavan sa logikom koja je bazirana na manjim pravilima (vremenska sklopka ili neka jednostavna pravila poput donošenja odluka na osnovi stanja napunjenosti baterije) ili potpomognut kompleksnijim eksternim sustavom (obično u oblaku sa AI/ML svojstvima povezan sa relevantnim izvorima informacija o cijenama energije u realnom vremenu) koji će određivati najbolji trenutak za kupnju ili prodaju električne energije u skladu sa potražnjom i cijenom. Osim Prosumera ključna su i pametna trošila kojima je moguće daljinski upravljati. Ta pamet može biti ugrađena u uređaje ili se (za stariju opremu) mogu koristiti pametne utičnice koje omogućavaju i kontrolu kvalitete električne energije.
Možemo dakle identificirati sljedeće tipične scenarije:
Slika 6 Noć, nema sunca, energija je jeftina
Slika 7 Dan, energija iz mreže je skupa, nema viškova
Slika 8 Dan, energija iz mreže je skupa, imamo viškove
Slika 9 Dan, nema sunca, energija skupa
Kriteriji za odabir opreme
Fotonaponski sustavi vrlo se razlikuju od svih konvencionalnih izvora električne energije, a ponajviše po:
odabiru individualnog i nipošto rutinskoga tehničkog rješenja
kritičnom odabiru veličine fotonaponskog i konvencionalnog sustava, o čemu najviše ovisi ekonomičnost
vrlo kritičnom odabiru opreme koja bez popravka mora odraditi 25g.
vrlo važno kome podvrgnuti izvođenje radova.
Najvažniji dio svakog fotonaponskog sustava su fotonaponski moduli, koji moraju zadovoljiti odgovarajuća tehnička svojstva. To znači da mora postojati sva potrebna tehnička dokumentacija kojom se dokazuju ispitivanja, funkcionalnost i godišnja proizvodnja po točno određenim uvjetima.
Kriteriji za odabir opreme su:
poznato podrijetlo opreme
tehnička dokumentacija opreme
atesti i tehnička jamstva opreme
upute za upravljanje i montažu
ugovor o tehničkim i proizvodnim jamstvima za opremu
određena cijena, rok i način plaćanja, trajanje jamstva
popis referenci proizvođača ili njihovog ovlaštenog zastupnika
Isplativost svih tehnologija proizvodnje energije, pa tako i fotonaponskih sustava, određuju:
prihodi i uštede od korištenja sustava
troškovi ulaganja (investicije)
pogonski troškovi
troškovi servisa i održavanja
troškovi raspremanja na završetku radnog vijeka postrojenja
neizravni (preventivni i sanacijski) troškovi očuvanja okolice.
Troškovi ulaganja u fotonaponsku opremu načelno se mogu podijeliti na:
troškovi ulaganja u fotonaponske module
troškovi ulaganja u izmjenjivače
troškovi ulaganja u regulatore napona i punjenje baterija
troškovi ulaganja u akumulatore
troškovi ulaganja u ostalu opremu
troškovi projektantsko-konzultantskih usluga
troškovi montaže opreme.
Tri ključne stavke u ukupnim troškovima izgradnje fotonaponskog sustava su:
fotonaponski moduli s udjelom u troškovima od 77.3 %,
izmjenjivač s udjelom u troškovima od 9.97 %,
konstrukcija s udjelom troškova od 4.15 %.
Pitanja o efikasnosti sustava
Koliki je temperaturni koeficijent solarne ploče?
Solarni paneli su najučinkovitiji na temperaturi od 25 stupnjeva C. Za svaki stupanj C iznad te vrijednosti učinkovitost pada za postotak između 0,3% i 0,5% u prosjeku. Ovaj postotak poznat je kao koeficijent temperature ploče.
U PVGIS-u gubitci fotonaponskog sustava zbog povišene temperature sa modulima postavljenim uz sam krov kuće iznose 15,2%, a sa modulima postavljenima na nosivu konstrukciju 10,5% . Razlog tome je zbog veće prozračenosti, a samim tim manji pad maksimalne snage modula. Tu se još nalaze gubitci zbog refleksije 2,4% i gubitci izmjenjivača i kabela od 4%.
Kako mogu povećati izlaz svog solarnog panela?
PWM ili MPPT regulator? Uvijek koristite MPPT solarni regulator – oni su do 30% učinkovitiji od PWM tipa. Redovito održavanje i čišćenje pomaže u održavanju izlazne snage solarnih panela. Osigurajte da je niz solarnih panela na izravnoj sunčevoj svjetlosti bez zasjenjenja. Solarni reflektori mogu pomoći u povećanju izlazne snage, ali morate paziti da se ploče ne pregrije, što će smanjiti izlaz.
Koji su solarni paneli najbolji poli ili mono?
Monokristalni solarni paneli su učinkovitiji od polikristalnih, ali su i skuplji. Međutim, relativni troškovi i učinkovitost se približavaju i nema velike razlike.
Da li se isplati ugradnja Solar Tracking sustava?
Kod fiksnih instalacija je potrebno odabrati optimalni kut za maksimalnu godišnju energiju ili za maksimalnu energiju tijekom razdoblja u kojem nam je potrebna veća proizvodnja električne energije. Teoretski je najbolje rješenje sa dvoosnim praćenjem prividnog kretanja Sunca. Time se može povećati dobivena energija za 25-40%.No da li je baš to točno?
Proračunski primjer za područje južne Hrvatske dan je na Slika 1, iz njega je evidentno da praćenje kretanja sunca ima određenih prednosti, no to onda treba staviti u kontekst ekonomske isplativosti, kako investicije tako i eksploatacije. Sustavi za praćenje su složeni, imaju brojne pokretne elemente – motore ili sklopke koji osim što povećavaju investiciju, kasnije su i značajan potrošač energije. Time se povećava i mogućnost kvarova na sustavu, a takva postrojenja su bitno manje otporna na udare vjetra što je u našim uvjetima značajan faktor.
Slika 10 Usporedba proizvodnje za fiksni i mobilni FN
U nastavku (Slika 2) donosimo realistični primjer nastao na osnovi realnih mjerenja na postrojenju u Portugalu.
Slika 11 Proizvodnja električne energije fiksnog solarnog sustava i jednoosni sustav za praćenje na istoj lokaciji
Graf prikazuje upotrebu fotonaponskog sustava sa sustavom za praćenje koji ima jednoosni pogonski aktuator koji pomiče fotonaponsku ploču kako bi pratio smjer sunčeve svjetlosti. Ovaj aktuator troši električnu energiju kao svoj izvor, a potrošena električna energija dolazi iz solarnih panela koje pokreću aktuatori što uzrokuje smanjenje energije koja je na raspolaganju potrošačima.
Zaključno, u usporedbi sa sustavima s fiksnim panelima, fotonaponski sustav sa sustavom za praćenje solarne energije manje je učinkovit za korištenje.
U okviru zajedničkih aktivnosti na uspostavi energetskih zajednica Drenove i Veprinca, organizirali smo predavanja pod nazivom Energetske zajednice – Teorija i praksa sunčanih elektrana, koja malo dublje objašnjavaju tehnologiju fotonaponskih sustava, prednosti uvođenja senzorike u naše kuće, kako financirati energetske zajednica i trenutno otvorene natječaje za sufinanciranje.
Teorija i praksa sunčanih elektrana – predavanje dr.sc. Josip Zdenković, Schrack Technik
Schack Technik je jedna od najrenomiranijih kompanija u domeni tehničkih rješenja u energetici i u telekomunikacijama, a dr.sc. Josip Zdenković je od 2008. u tvrtki Schrack Technik u Zagrebu gdje je i danas direktor. Glavno područje stručnog interesa su mu elektromotorni pogoni i obnovljivi izvori električne energije – posebno baterije (svakako pogledati njegovo predavanje o dimenzioniranju baterija).
Predavanje Josipa Zdenkovića
Bilo je doista sjajno slušati predavanje doajena obnovljivih izvora energije dr.sc. Josipa Zdenkovića, a posebno prelistati njegovu knjigu Fotonaponski otočni sustavi koju slobodno možemo nazvati Biblijom solarnih tehnologija. Svakako možemo preporučiti da nabavite svoj besplatni primjerak ako vas imalo zanimaju primjeri dobre prakse i pregršt tehničkih infomacija.
Procesi, senzori i financije
10 KORAKA od projektiranja do spajanja na mrežu vlastite male fotonaponske elektrane – Saša Ukić, 3t.Cable
Smart Home rješenja (učinkovito upravljanje energijom) – Damir Medved, EZ Drenova, Udruga Bez granica
Mogućnosti alternativnih izvora financiranja – Damir Juričić, Centar za podršku pametnim i održivim gradovima Sveučilišta u Rijeci,
Dostupni izvori financiranja fotonaponskih postrojenja iz HR i EU projekata, Tina Ragužin, 3t.Cable
Predavanje Ukić, Medved, Juričić, Ragužin
Ovo je samo prvo u nizu zajedničkih predavanja koja ćemo organizirati na Drenovi i na Veprincu u cilju promoviranja koncepata građanske energije, a koja bi trebala rezultirati i formiranjem Energetske zadruge Drenova i Energetske zajednice Veprinac – ova dva rubna naselja većih gradova dijele doista jako puno zajedničkih interesa. Samo zajedno možemo postići neke pomake – veselimo se suradnji!
U organizaciji Regionalne razvojne agencije Primorsko-goranske županije i Regionalne energetske agencije Kvarner jučer je u opatijskom Centru Gervais, uz prijenos uživo na Vimeo kanalu, održana konferencija „Energetski dan 2021“. Konferenicja je posvećena temama zelene tranzicije Primorsko-goranske županije, uz predstavljanje mogućnosti financiranja zelenih projekata putem ESI fondova 2021-2027. Na predavanju su sudjelovali i naši stalni suradnici Darko Jardas i Damir Medved koji su predstavili aktivnosti svojih organizacija u domeni energetske tranzicije.
Predavanja
U dijelu konferencije posvećenom energetskoj tranziciji otoka, prikazana je snimka obraćanja Tonina Picule, zastupnika u Europskom parlamentu na temu mogućnosti koje donosi Europski zeleni plan te primjera dobre prakse s hrvatskih otoka. O cresko-lošinjskom otočju govorio je dr. sc. Ugo Toić, direktor Otočne razvojne agencije OTRA i predsjednik skupštine energetske zadruge “Apsyrtides”, stavivši naglasak na ljude, kao temelj energetske tranzicije, te na nužnost generalne promjene razmišljanja i djelovanja u smjeru dekarbonizacije.
Damir Medved (ENT) – predavanje o iskustvima iz Insulae projekta
Još jednan primjer dobre prakse cresko-lošinjskog arhipelaga predstavio je mr. sc. Damir Medved iz Ericssona Nikola Tesla, govoreći o analizi velikih skupova podataka na primjeru EU projekta INSULAE posvećenog dekarbonizaciji otoka Unije.
Prezentacija Darka Jardasa, ravnatelja REA-e, „Koji su energetski trendovi u Europskoj uniji i kakav je položaj Hrvatske i Primorsko-goranske županije u odnosu na ostatak EU“.
Petak navečer protekao je u Društvenom centru Drenova u ugodnom druženju sa Vjeranom Piršićem iz Eko Kvarnera i dr. sc. Damirom Juričićem iz Centra za podršku pametnim i održivim gradovima Sveučilišta u Rijeci, a mrazgovor je moderirao Damir Medved iz udruge Bez granica. Na predavanju koje je trajalo skoro dva sata saznali smo (skoro) sve o solarnoj energiji, te pregršt informacija o važnosti novih zelenih izvora energije.
Kako kaže Vjeran, zeleni izvori energijeviše uopće nisu alternativni već predstavljaju obavezu koja je dogovorena na razini EU. Obaveza koja kaže da se u narednih dvadesetak godina moramo posve promijeniti ukoliko želimo živjeti na planetu bez (ili sa minimalno) ekstremnih vremenskih uvjeta, sa visokom bioraznolikošću, produktivnom i kvalitetnom za život svugdje, a ne samo u izoliranim enklavama kao iz nekog distopijskog filma.
Pogledajte integralnu snimku predavanja, preuzmite izvrsnu brošuru koji nam poklanja Vjeran Piršič MOJA ENERGIJA, MOJA SLOBODA, i razmislite da li se želite pridružiti inicijativi za osnivanje Energetske zadruge Drenova!
Linkovi na izvore informacija
Više o solarnoj energiji i njenom iskorištavanju možete pronaći na sljedećim poveznicama:
posebno preporučamo sjajnu brošuru Vjerana Piršića – Kako napraviti fotonaponsku elektranu – MOJA ENERGIJA, MOJA SLOBODA
Fotografije sa predavanja
Covidu -19 usprkos okupilo se dosta zainteresiranih u prostorijama Društvenog centra Drenova i puno više online na lašem live Facebook streamu. Pitanja su bila brojna i ohrabruju – otvoren je put ka osnivanju Energetske zadruge Drenova.